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Definition generation for semantic change detection

Definitions as senses
▶ We use LLM-generated contextualized word definitions for lexical semantic change

detection (LSCD)
▶ ...by comparing vectorized definitions
▶ ...by comparing the distributions of definitions (‘definitions-as-senses’)

▶ Dictionary-like definitions give us interpretability:
▶ what exactly has changed in the meaning of a word over time?

▶ Still reasonable performance on three different languages.

Important prior work
▶ the general idea of using definitions as representations from [Giulianelli et al., 2023]
▶ baseline sense-based LSCD system from [Tang et al., 2023]

▶ (they used pre-defined sense inventories, no definition generation)
▶ fine-tuned definition generation models from [Kutuzov et al., 2024]
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Our systems

General pipeline
1. The task: to rank a given set of words by the degree of their semantic change in two time

periods (represented by two corpora)

2. Let’s find the senses of all the target word occurrences!
▶ [Tang et al., 2023] did this by choosing a sense from an ontology (WSD)
▶ we instead generate a definition from scratch for each target word occurrence...
▶ ...assuming that different definitions will be generated for different senses.

2 sets of generated definitions (for 2 time periods). How to compare them for a change score?

Method 1. Definition embeddings
1. Embed the generated definitions into a vector space with, e.g., DistilRoBERTa

2. Use well-developed LSCD methods of measuring distances between representations: PRT,
APD, PRT/APD [Kutuzov et al., 2022]

3. The only difference: definition embeddings instead of token embeddings
Good performance, but interpretability is lost after vectorizing definitions.
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Method 2. Definitions as strings

▶ Let’s use definitions in their textual form
▶ Every definition is a ‘sense’
▶ definition distributions for 2 time periods are compared similarly

to how sense distributions are compared in [Tang et al., 2023]

▶ These ‘senses’ are too granular, because of too many unique
definitions. E.g., ‘plane’:
▶ ‘An aircraft, especially one designed for military use’
▶ ‘An aircraft, especially a military aircraft’, etc

▶ Hence, we merge similar definitions into one:
▶ ‘Minimalist merging’: only with the most frequent definition
▶ ‘Full-fledged merging’: any pair of definitions can be merged

together
▶ Merging if Levenshtein edit distance exceeds a pre-defined

threshold.

Merging reduces the number
of unique definitions: more
realistic as senses.

Average number of senses per 100 usages before
and after merging, calculated across all datasets
for each language.
(should be done cautiously: merging too much
can degrade the performance)
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One English example

3 most frequent definitions/senses per time period for ball (high predicted change rate):
Period 1 (1810-1860) Period 2 (1960-2010)

ball
Jensen-
Shannon
divergence
(change
score): 0.83

A spherical object especially one
that is round in shape (82%)

The object hit in a game (80%)

A party (6%) The object used in various sports
especially in soccer tennis basket-
ball etc (<1%)

A wedding (<1%) The object used in various sports
especially in soccer basketball and
other games which is thrown or
kicked (<1%)

More examples, data and code at
https://github.com/ltgoslo/Definition-generation-for-LSCD
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Performance across different generation and merging strategies
English Norwegian-1 Norwegian-2 Russian-1 Russian-2 Russian-3

Cosine JS Cosine JS Cosine JS Cosine JS Cosine JS Cosine JS

No merging:
Greedy 0.461 0.405 0.303 0.332 0.211 0.232 0.299 0.390 0.337 0.427 0.383 0.469
Beam 0.457 0.476 0.268 0.238 0.216 0.201 0.304 0.368 0.297 0.403 0.317 0.417
Diverse 0.449 0.382 0.241 0.280 0.069 0.164 0.301 0.345 0.310 0.389 0.348 0.421

Minimalist merging:
Greedy 0.564 0.565 0.251 0.280 0.192 0.197 0.271 0.391 0.233 0.431 0.325 0.491
Beam 0.510 0.500 0.297 0.240 0.112 0.189 0.298 0.366 0.252 0.383 0.301 0.409
Diverse 0.478 0.434 0.325 0.296 0.162 0.215 0.265 0.354 0.268 0.406 0.287 0.443

Full-fledged merging:
Greedy 0.417 0.418 0.261 0.362 0.193 0.260 0.286 0.391 0.250 0.416 0.360 0.476
Beam 0.492 0.493 0.265 0.215 0.186 0.226 0.304 0.360 0.250 0.347 0.327 0.420
Diverse 0.312 0.301 0.209 0.315 0.202 0.221 0.236 0.301 0.217 0.379 0.262 0.411

Threshold 50 10 10 10 10 10
LSCD performance (Spearman’s ρ) with different generation, merging and distance calculation
strategies.
Threshold : Levenshtein edit distance threshold for merging definitions. 6



Results (Spearman’s ρ for graded LSCD) compared to the baselines

Method English Norwegian-1 Norwegian-2 Russian-1 Russian-2 Russian-3

Non-interpretable methods:

XLM-R token embeddings 0.514♢ 0.394♢ 0.387♢ 0.376♢ 0.480♢ 0.457♢

XL-LEXEME+APD (WiC-based) 0.886 0.659 0.640 0.796 0.820 0.863

Definition embeddings (ours) 0.637 0.496 0.565 0.488 0.462 0.504

Interpretable methods:

Lesk without PoS 0.423♣ 0.178 0.500 0.294 0.279 0.286Lesk with PoS 0.587 0.150 0.474

ARES sense embeddings 0.529♣ — — — — —
LMMS sense embeddings 0.589♣ — — — — —

Definitions as senses (ours) 0.565 0.362 0.260 0.391 0.431 0.491
(♢: best results from [Giulianelli et al., 2022], ♣: [Tang et al., 2023], XL-LEXEME results from
[Periti and Tahmasebi, 2024])
Definition embeddings yield better performance, but definitions as senses are interpretable and
explainable.
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