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Motivation

Why just another LSCD shared task?
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Shared task overview

February 2024 – April 2024

Ascertain and eXplain Overhauls of the
Lexicon Over Time at LChange’24

The task: update a dictionary
▶ Subtask 1: Given target word senses

from an old time period and target word
usages from a new time period, assign
old or newly gained senses to the usages
from the new time period;

▶ Subtask 2: Provide definitions of the
gained senses

The participants could participate in both
tasks, or in one of them only
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The task

Data sources
▶ Finnish: Dictionary of Old Literary Finnish Institute for the Languages of Finland (2023); old

1543–1699, new 1700–1810
▶ Russian: Dal’s Explanatory Dictionary of the Living Great Russian Language Dal (1909)

(old, XIX century) and Wiktionary-based CODWOE Mickus et al. (2022) (new, modern)
▶ German: DWUG DE Sense dataset Schlechtweg (2023); old, XIX century and new

1946-1990
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Statistics

Number of samples in AXOLOTL’24 splits

Language Period Train Dev Test

Finnish
New 47242 3351 3264
Old 45897 3203 3461
Total 93139 6554 6725

Russian
New 4581 1605 1702
Old 1912 421 424
Total 6493 2026 2126

German
New — — 568
Old — — 584
Total — — 1152

Number of target words in
AXOLOTL’24 splits

Language Train Dev Test

Finnish 4289 254 275
Russian 924 201 211
German — — 24
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Data annotation

Finnish
▶ detection of a target word position in an example by Levenshtein distance
▶ manual verification of the target word positions in the validation and test splits
▶ edge cases: punctuation, parts of compound words

Russian
▶ mapping between Dal senses and CoDWoE senses by decision tree classifier trained

on cosine similarity between sentence-transformers Reimers and Gurevych (2020)

embeddings of definitions (for 228 manually annotated definition pairs)
▶ manual verification of the mapping
▶ edge cases: CoDWOe has more granular senses (one sense in Dal may correspond to

many senses in CoDWoE; some Dal samples contain definitions only and no
examples)

6



Contents

1 Shared task overview

2 Subtask 1

3 Subtask 2

4 Results
Subtask 1 (6 teams)
Subtask 2 (3 teams)

5 Conclusions

6



Subtask 1

Subtask 1 example
Russian target word экспресс:
Provided sense Usage Correct sense

1, old express train, especially fast, express 1, old

? I was traveling by an express train, in a sleeping car 1, old

?
But the other client of this bookmaker was unlucky.

2, newHe placed 700 thousand rubles on a combined bet,
in which he included a bet on "Lyon" with betting odds (0)

? In this night train, which distinguished itself from all other trains by its pre-war comfort... 1, old

? write in details what you see and send it to me in Otradnoe by express mail 3, new

Evaluation
▶ Adjusted Rand Index (ARI) for all predictions (senses, assigned to usages from the new time

period); measures performance in WSI

▶ macro-F1 for all predictions, where usages from the new time period had senses previously
existing in the old time period as the gold answers; measures performance in WSD
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Subtask 2

Subtask 2 example
The target word экспресс
Sense Usages Gold definition

1, old
I was traveling by an express train, in a sleeping car means of transport (train, ship, bus etc.),

traveling at an increased speed, stopping only at major stations

1, old
In this night express, which distinguished itself from all other trains by its pre-war comfort... means of transport (train, ship, bus etc.),

traveling at an increased speed, stopping only at major stations

2, new
But the other client of this bookmaker was unlucky.
He placed 700 thousand rubles on a combined bet,
in which he included a bet on "Lyon" with betting odds (0) special. bet on several independent outcomes

3, new write in details what you see and send it to me in Otradnoe by express mail colloquial. express mail

Evaluation
BLEU/ROUGE and BERTScore. The final score is averaged across target words
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Our baselines

Subtask 1 baseline
Affinity Propagation Frey and Dueck (2007) on sentence embeddings using LEALLA-large
model Mao and Nakagawa (2023)

Subtask 2 baseline
▶ fine-tuning multilingual causal language model XGLM Lin et al. (2021) as a Siamese

network
▶ sentence-level representations of usage examples are obtained by pooling XGLM’s

output embeddings and applying a learned linear projection
▶ using the sentence embeddings obtained in the previous step as an input to the same

XGLM to generate the lexicographic definition
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Subtask 1 (6 teams)

Subtask 1 results (best submissions per team by averaged Fi-Ru-De)
Team Fi-Ru-De Fi-Ru Fi Ru De

Deep-change 41.3 34.9 63.8 05.9 54.3
Holotniekat 31.2 32.0 59.6 04.3 29.8
TartuNLP 31.0 26.8 43.7 09.8 39.6
IMS_Stuttgart 28.7 27.4 54.8 00.0 31.4
ABDN-NLP 22.1 28.1 55.3 00.9 10.2
WooperNLP 18.7 28.0 42.8 13.2 00.0

Baseline 04.1 05.1 02.3 07.9 02.2
Random sense baseline 19.0 26.3 52.2 00.4 04.4
MFS baseline 24.2 30.1 59.6 00.5 12.5

ARI ×100
Team Fi-Ru-De Fi-Ru Fi Ru De

Deep-change 75.0 75.3 75.6 75.0 74.5
Holotniekat 64.1 65.8 65.5 66.1 60.8
TartuNLP 59.0 59.5 55.0 64.0 58.0
ABDN-NLP 48.7 58.0 59.0 57.0 30.0
IMS_Stuttgart 43.1 32.8 65.5 00.0 63.8
WooperNLP 31.6 47.5 50.3 44.6 00.0

Baseline 20.7 24.5 23.0 26.0 13.0
Random sense baseline 53.3 59.9 62.1 57.7 40.1
MFS baseline 52.6 61.6 65.4 57.7 34.7

F1 ×100

▶ Deep-change: GlossReader, no novel
senses; Kokosinskii et al. (2024)

▶ WooperNLP: clustering by cosine similarity
between sentence embeddings

▶ Holotniekat: clustering by cosine similarity
between sentence embeddings Brückner et al.
(2024)

▶ TartuNLP: GlossBERT with XLM-RoBERTa
Dorkin and Sirts (2024)

▶ ABDN-NLP: NeighborClustering Ma et al. (2024)

▶ IMS_Stuttgart: 1) USD with XL-LEXEME
Cassotti et al. (2023) 2) hierarchical flat clustering
with cosine similarity
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Subtask 2 (3 teams)

Subtask 2 results (best submissions per team by averaged Fi-Ru-De)

Average of BLEU and BERTScore, ×100:
Team Fi-Ru-De Fi-Ru Fi Ru De

TartuNLP 46.7 54.1 35.4 72.8 32.0
WooperNLP 34.0 34.6 34.9 34.2 33.0
ABDN-NLP 25.3 37.9 40.7 35.2 00.0
Baseline 21.8 20.5 21.8 19.1 24.5

Systems’ coverage of target words with
newly gained senses (percents):

Team Finnish Russian German

TartuNLP 87 86 50
WooperNLP 100 91 100
ABDN-NLP 01 03 —
Baseline 100 100 100

▶ TartuNLP: GlossBERT fine-tuned to
match definitions from Wiktionary (which
was the source of the new time period for
Russian) Dorkin and Sirts (2024)

▶ WooperNLP: prompting GPT3.5
https://github.com/t-montes/Axolotl24

▶ ABDN-NLP: prompting GPT3.5 Ma et al. (2024)
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Conclusions

▶ both subtasks proved to be challenging

▶ systems relying on masked language models specifically fine-tuned on a set of curated
sense definitions are most robust across languages and tasks

▶ systems which attempt to infer sense knowledge directly from a large generative LM do
not fall far behind (e.g. WooperNLP used it to augment subtask 1 data)

▶ most systems demonstrated good cross-lingual capabilities, being able to produce
satisfactory predictions for a surprise language (German) without any training data

▶ the datasets are publicly available

Post-evaluation stage and data
Subtask 1:
https:

//codalab.lisn.upsaclay.
fr/competitions/18570

Subtask 2:
https:

//codalab.lisn.upsaclay.
fr/competitions/18572

Code and data repository
https:

//github.com/ltgoslo/
axolotl24_shared_task
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