Presence or Absence: Are Unknown Word Usages in **Dictionaries?**

Xianghe Ma¹, Dominik Schlechtweg², Wei Zhao³

University of Heidelberg¹, University of Stuttgart², University of Aberdeen³

Paper in a Nutshell

Motivation: The link between computational modeling of semantic change and dictionaries is previously

Research Questions

- Can we detect what word usages are (not) covered by dictionaries?
- Can we automate the process

Contributions

• Our system is unsupervised.

- Our system is interpretable.
- A lexicography pipeline that automates the process of novel sense detection and sense gloss generation.

- tenuous.
- **Aim: Present a train-free** lexicography system based on LLMs to manage dictionary updates.
- -0-
 - Main results: No significant performance gain for **GPT-4/Llama3 over** GPT-3.5/Llama2.
- of generating sense glosses for unrecorded word usages?
- How can we evaluate the results of novel sense detection and sense gloss generation?
- Investigation of LLMs including GPT-3.5, GPT-4, Llama-2 and Llama-3 on sense gloss generation.

Our system is unsupervised

Our system is interpretable

Subtask 1	Generating dictions like definitions Subtask 2	ату-		id:1215	tallia ,1216,1217	id:120	sulaun 8,1209,121
			Results – Ta	ask 1			
		F	innish	R	Russian	C	Jerman
Systems	#Entries	F BLEU	Finnish BERTScore	R	Russian BERTScore	BLEU	German BERTScor
Systems ABDN-NLP (Ours)	#Entries	F BLEU 0.107	Finnish BERTScore 0.706	R BLEU 0.027	Russian BERTScore 0.677	0.000	German BERTScor 0.714
Systems ABDN-NLP (Ours) TartuNLP	#Entries 3 1	F BLEU 0.107 0.028	Finnish BERTScore 0.706 0.679	R BLEU 0.027 0.587	Russian BERTScore 0.677 0.869	0.000 0.010	German BERTScor 0.714 0.630
Systems ABDN-NLP (Ours) TartuNLP t-montes	#Entries 3 1 7	F BLEU 0.028 0.023	Finnish BERTScore 0.679 0.675	R BLEU 0.027 0.587 0.027	Russian BERTScore 0.677 0.869 0.656	0.000 0.010 0.010	German BERTScor 0.630 0.650

iopiaa

Results - Task 2							
	Finnish						
LLMs	BLEU	BERTScore					
Baseline	0.248	0.607					
GPT-3.5-turbo	0.022	0.640					
GPT-4-turbo	0.025	0.658					
LLaMA-2-7B	0.013	0.611					
LLaMA-3-8B	0.013	0.603					

Limitations

• Datasets are small with very few word usages for headword on average - this makes our system less performant. • BERT is the non-frontier text encoder we use in our system

for its flexibility to generate both token and sentence embeddings.

 Data contamination - LLMs may have seen dictionary entries during training.

LChange @ ACL 2024, Bangkok