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Abstract

The recent introduction of large-scale datasets
for the WiC (Word in Context) task enables the
creation of more reliable and meaningful con-
textualized word embeddings. However, most
of the approaches to the WiC task use cross-
encoders, which prevent the possibility of deriv-
ing comparable word embeddings. In this work,
we introduce XL-LEXEME, a Lexical Seman-
tic Change Detection model. XL-LEXEME
extends SBERT, highlighting the target word
in the sentence. We evaluate XL-LEXEME on
the multilingual benchmarks for SemEval-2020
Task 1 - Lexical Semantic Change (LSC) De-
tection and the RuShiftEval shared task involv-
ing five languages: English, German, Swedish,
Latin, and Russian. XL-LEXEME outper-
forms the state-of-the-art in English, German
and Swedish with statistically significant dif-
ferences from the baseline results and obtains
state-of-the-art performance in the RuShiftEval
shared task.

1 Introduction and Motivation

Lexical Semantic Change (LSC) Detection is the
task of automatically identifying words that change
their meaning over time. The LSC Detection
task implicitly aims to disambiguate synchronic
word sense occurrences and then find differences
in the word sense frequencies in different peri-
ods. Word Sense Disambiguation (WSD) is a long-
studied task in Natural Language Processing (Nav-
igli, 2009), which consists of associating the cor-
rect sense to a word occurring in a specific context.
WSD involves some crucial issues, such as relying
on a fixed sense inventory. Fixed sense inventories
ignore the diachronic aspect of language because
they can miss older unused senses or be outdated
and missing new senses.

The Word in Context task (WiC) (Pilehvar and
Camacho-Collados, 2019) aims to overcome these
issues. In this work, we train a model on the WiC
task and then use it to perform LSC Detection. In

the WiC task, given the word w and two differ-
ent contexts C1, C2, the systems have to deter-
mine whether the meaning of w is the same in the
two contexts or not. Our approach is grounded
on the assumption that models trained on the WiC
tasks are robust enough to transfer the knowledge
learned in a synchronic setting to a diachronic
one. We summarise the main contribution of this
work as follows: (i) We propose a pre-trained bi-
encoder model, called XL-LEXEME, on a large-
scale dataset for the WiC task, which allows us to
obtain comparable lexical-based representations;
(ii) We assert the effectiveness of XL-LEXEME
despite the computational limitation compared to
the cross-encoder architecture for the LSC Detec-
tion task; (iii) Experiments on the LSC Detection
task show that XL-LEXEME outperforms state-of-
the-art LSC Detection models for English, German,
Swedish, and Russian.

2 Related Work

LSC Detection systems can be categorized based
on the distributional embeddings used to tackle
the LSC Detection task. One category is repre-
sented by those approaches that adopt type-base
(i.e., static) embeddings. UWB (Prazák et al., 2020;
Prazák et al., 2021) represents an example of this
category of systems. First, it employs word2vec
Skip-gram with Negative Sampling (Mikolov et al.,
2013) to compute a semantic space for each corpus.
It uses techniques like the Canonical Correlation
Analysis (Hardoon et al., 2004) and the Orthogonal
Transformation (Hamilton et al., 2016) to align the
abovementioned spaces. Therefore, the cosine sim-
ilarity between the vectors representing the word in
two different spaces is used to detect the semantic
shift.

With the increasing use of contextualized word
embeddings, numerous approaches employing
BERT-base models have been developed for LSC
Detection (Montanelli and Periti, 2023; Laicher
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et al., 2021). In TempoBERT (Rosin et al., 2022),
the authors exploit the concept of Masked Lan-
guage Modeling (MLM), where the goal is to train
a language model to predict a masked portion of
text given the remaining part. In particular, they
employ this technique to encode the concept of
time into a BERT model. This is done by concate-
nating a specific token representing time to the text
sequence. At inference time, TempoBERT can be
used to predict the year of a sentence, masking
the time reference, or to predict a masked token of
the sentence conditioned by the time reference. In
the same line of research, in Temporal Attention
(Rosin and Radinsky, 2022), the authors investigate
the effect of modifying the model instead of the
input sentence like in TempoBERT. This is done
by extending the model’s attention mechanism to
consider the time when computing the weight of
each word. The time dimension is encoded using a
different query embedding matrix for each times-
tamp.

Another kind of approach exploits the infor-
mation coming from other tasks to perform LSC
Detection. GlossReader represents an example
(Rachinskiy and Arefyev, 2021), where a model
based on XML-R (Conneau et al., 2020b) is first
trained on English SemCor (Miller et al., 1994)
with glosses from WordNet 3.0 (Miller, 1992)
to perform WSD. Exploiting the zero-shot cross-
lingual characteristics of XML-R, the authors used
the same model to perform LSC Detection in the
Russian language. With DeepMistake (Arefyev
et al., 2021), the authors take advantage of the WiC
task instead of WSD. They train a cross-encoder
with XML-R as an underlying Language Model on
the MCL-WiC training and development set and
fine-tune on the RuSemShift dataset (Rodina and
Kutuzov, 2020). DeepMistake, differently from
XL-LEXEME, relies on the cross-encoder archi-
tecture and exploits only the MCL-WiC training
dataset.

3 XL-LEXEME

Generally, for pairwise sentence similarity tasks,
BERT models use a cross-encoder, in which the
pairwise sequences are jointly encoded, and the
overall vectors are used for the classification. How-
ever, in several tasks, the cross-encoder is not suit-
able since it cannot provide a distinct meaningful
representation for each sentence. An approach to
overcome this issue involves pooling the BERT out-

put encoded vectors, which often results in worse
performance. Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) overcomes the limitation of
cross-encoders using a Siamese Network, i.e., the
weights of the underlying networks are shared.
SBERT encodes the two sequences separately in
the BERT model exploiting the Siamese architec-
ture. The sequence-level representation is obtained
by averaging the output encoded vectors, which are
directly compared using similarity measures such
as cosine similarity.

Meanwhile, cross-encoders perform better since
they are trained to profit from the attention over
the whole input. In this work, we introduce XL-
LEXEME1 which mirrors models for pairwise se-
quence similarity tasks and adapts them to the WiC
task, giving prominence to the target word, i.e.
the word for which we want to detect the LSC.
The model takes as input two sequences s1 and s2.
The sequences are tokenized using subwords tok-
enizer, such as Sentence Piece (Kudo and Richard-
son, 2018), and the special tokens <t> and </t> are
used as target word delimiters (Xie et al., 2021):

s1 = w1, ...,<t>, wt
i , ..., w

t
i+k,</t>, ..., wN

s2 = w1, ...,<t>, wt
j , ..., w

t
j+p,</t>, ..., wM

(1)

where N and M represent the number of sub-
words of the sequence s1 and s2 respectively,
while wt

i , ..., w
t
i+k and wt

j , ..., w
t
j+p are the sub-

words of the target words. In the following,
we describe the baseline cross-encoder and XL-
LEXEME based on a bi-encoder. For the cross-
encoder, the two input sequences are concatenated
by the special token [SEP ] in an overall sequence
s = [CLS] s1 [SEP ] s2 [SEP ]. If the length of
s, i.e. N +M + 3, is greater than the maximum
sequence length λ, then the sequence s is cut such
that the length of s1 and s2 is less than λ∗ = λ−3

2 .
To comply with the maximum length, the left and
right contexts of the sequence are truncated. For
instance, s1 is truncated as follows:

s1 = wn0 , ...,<t>, wt
i , ..., w

t
i+k,</t>, ..., wn1 (2)

where n0 = max(0, i − 1 − λ∗−k−2
2 ) and n1 =

min(N, i + k + 1 + λ∗−k−2
2 ). The truncated se-

quence has a length γ < λ. The encoded rep-
resentations of each subword (v1, v2, ..., vγ) are

1The XL-LEXEME code is available on GitHub
https://github.com/pierluigic/xl-lexeme.
The XL-LEXEME model is available in the Hugging
Face Model Hub https://huggingface.co/
pierluigic/xl-lexeme.
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summed to get the encoded representation of the
overall sequence, i.e. senc =

∑γ
i vi. Finally, the

vector senc is used to compute the logits:

logit = log σ(Wsenc) (3)

where W ∈ IR1×d. The model is trained to mini-
mize the Binary Cross-entropy loss function.

XL-LEXEME is a bi-encoder that encodes the
input sequences using a Siamese Network into two
different vector representations. Each sequence is
tokenized and truncated according to the maximum
length λ∗, using Equation (2). We thus obtain the
new lengths γ1, γ2. The vector representation is
computed as the sum of the encoded subwords
(v1, v2, ..., vγ), i.e. senc1 =

∑γ1
i vi and senc2 =∑γ2

j vj .
XL-LEXEME is trained to minimize the Con-

trastive loss (Hadsell et al., 2006):

ℓ =
1

2

[
y · δ2 + (1− y) ·max(0,m− δ)2

]
(4)

where we adopt a margin m = 0.5. We use as
default distance δ the cosine distance between
the encoded representations of s1 and s2, i.e.
δ = cos(senc1 , senc2 ). The main advantage of XL-
LEXEME concerning models based on the cross-
encoder architecture is efficiency. The time cost
can be directly derived from the different archi-
tectures that exploit XL-LEXEME and the cross-
encoder baseline. The self-attention time com-
plexity O(N2 ∗ d) depends on the vector dimen-
sion d and the sequence length, which is N for
the cross-encoder and N

2 for XL-LEXEME. For
XL-LEXEME, the time complexity is reduced to
O((N2 )

2 ∗ 2d).

4 Experimental setting

4.1 Lexical Semantic Change Detection
SemEval-2020 Task 1: Unsupervised Lexical Se-
mantic Change Detection (Schlechtweg et al.,
2020) is the first task on Unsupervised Lexical
Semantic Change Detection in English, German,
Swedish, and Latin languages. For each language,
two corpora represent two different periods (T0,
T1). Moreover, a set of target words, annotated us-
ing the DUREL framework (Schlechtweg et al.,
2018), are provided. SemEval-2020 Task 1 in-
volves two subtasks. The binary classification task
requires assigning a label (changed/stable) to each
target word. The ranking task sorts the target words
according to their degree of semantic change. In

this work, we focus on Subtask 2, and for the sake
of simplicity, we refer to SemEval-2020 Task 1
Subtask 2 as SemEval-2020 Task 1.

RuShiftEval, different from SemEval-2020 Task
1, involves three sub-corpora extracted from the
Russian National Corpus spanning three peri-
ods. Models are evaluated on the resulting three
test sets, namely RuShiftEval1 (pre-Soviet and
Soviet), RuShiftEval2 (Soviet and post-Soviet),
and RuShiftEval3 (pre-Soviet and post-Soviet).
RuShiftEval provides participants with develop-
ment data that can be used for tuning models.
RuShiftEval aims to corroborate if training data
can improve LSC Detection models. The develop-
ment data rely on the RuSemShift dataset (Rodina
and Kutuzov, 2020), which includes two sets of
70 target words for the pre-Soviet to Soviet period
and Soviet to post-Soviet period, respectively. The
dataset also includes annotated pairwise sentences,
which can be used for training the models.

4.2 Training details

XL-LEXEME and the cross-encoder are trained
using XLM-RoBERTa (XLM-R) (Conneau et al.,
2020a) large as the underlying Language Model2

and using an NVIDIA GeForce RTX 3090. As for
training data, the model uses the training data of
MCL-WiC (Martelli et al., 2021), AM2ICO (Liu
et al., 2021), and XL-WiC datasets (Raganato et al.,
2020) merged with the randomly sampled 75% of
the respective development data of each dataset.
The remaining 25% of the development data is
used to fine-tune hyper-parameters. Moreover, we
augment training data for the cross-encoder by
swapping the order of sentences in the training
set (Martelli et al., 2021).

We use AdamW optimizer and linear learning
warm-up over the 10% of training data. We per-
form a grid search for the hyper-parameters opti-
mization, tuning the learning rate in {1e-6, 2e-6,
5e-6, 1e-5, 2e-5} and the weight decay {0.0, 0.01}.
Table 3 (Appendix A) shows the selected hyper-
parameters. We sample 200 sentences containing
the target word for each language and each period.
The sampling is repeated ten times, and the re-
sults are averaged over the ten iterations. We use
the same methodology of Rachinskiy and Arefyev
(2021) for sampling sentences from the RuShiftE-
val corpora. We sample sentences in which we find
the exact match with the target words with no pre-

2The XLM-R model is fine-tuned during the training.
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processing of the SemEval dataset. The LSC score
is computed as the average distance between the
vectors over the two different periods:

LSC(st0 , st1) =
1

N ·M
N∑

i=0

M∑

j=0

δ(st0i , s
t1
j ) (5)

where δ is the distance measure, i.e. δ = 1 −
log σ(Wsenc) for the cross-encoder baseline and
δ = cos(senc1 , senc2 ) for XL-LEXEME.

5 Results

Table 1 and Table 2 report the results on the
SemEval-2020 Task 1 Subtask 2 and the results
on the RuShiftEval test set. The results of the best
systems are in bold. XL-LEXEME achieve the best
score for English, German, Swedish, RuShiftEval1,
RuShiftEval2, and RuShiftEval3. XL-LEXEME
achieves a strong Spearman correlation for English
and Swedish languages and a solid correlation on
the German dataset, obtaining a significative cor-
relation (p < 0.001). XL-LEXEME obtains no sig-
nificant results in the Latin language since the pre-
dicted scores for the target words are not correlated
with the test set. Latin is underrepresented in the
training data of XLM-R, and there are no similar
languages in the WiC dataset that we use for train-
ing XL-LEXEME. Moreover, the Latin dataset is
more challenging as it involves the first corpus writ-
ten in ancient Latin, which differs in many aspects
from modern Latin. For this reason, XL-LEXEME
could be ineffective in ancient languages and, in
general, in languages that are not widely covered
by the WiC dataset.

We report the statistical significance of the dif-
ference between the performance of XL-LEXEME
concerning the other models. The statistical signifi-
cance of the difference is computed using Fisher’s
z-transformation (Press, 2002). XL-LEXEME ob-
tains stronger correlations than the cross-encoder,
but the differences are not significant. The corre-
lations obtained on the English and the German
datasets are significantly different (p < 0.05) for
all the systems that participated in the SemEval-
2020 Task 1 but not for TempoBERT and Tem-
poral Attention. On the other side, TempoBERT
and Temporal Attention obtain a Spearman correla-
tion on English and German that is not statistically
different from the systems on the SemEval-2020
Task 1 leaderboard. In the Swedish language, XL-
LEXEME is the only one obtaining a significantly

different correlation from the Count baseline re-
sults. XL-LEXEME showed its effectiveness also
in Swedish, although the WiC dataset does not
cover this language. Presumably, Swedish benefits
from the presence of other languages descending
from the Old Norse language, namely Danish and
Norwegian.

XL-LEXEME obtains competitive results for
the Russian language in the RuShiftEval leader-
board. Contrary to XL-LEXEME, Deep Mistake
and Gloss Reader are fine-tuned on the RuSemShift
dataset. The differences between XL-LEXEME
and the best two systems in the leaderboard are
not statically significant. Moreover, in Table 2,
the results of XL-LEXEME fine-tuned on the
RuSemShift are shown. Although the fine-tuned
model achieves the best correlation scores in the
three datasets, the difference between DeepMistake
and GlossReader is not significant.

6 Conclusion

In this work, we introduced XL-LEXEME, a model
for LSC Detection. XL-LEXEME is pre-trained
on a large WiC dataset to mirror sentence-level
encoders focusing on specific words in contexts.
We evaluated our model on two Lexical Semantic
Change Detection datasets: SemEval-2020 Task 1
and RuShiftEval. XL-LEXEME outperforms state-
of-the-art models for LSC Detection in English,
German, Swedish, and Russian datasets, with sig-
nificant differences from the baselines. The XL-
LEXEME effectiveness and efficiency make it re-
liable for LSC Detection on large diachronic cor-
pora.

7 Limitations

While the vector representations obtained using
XL-LEXEME for different languages are poten-
tially comparable, lying on the same geometric
space, the evaluation of cross-lingual semantic
changes cannot be performed for lacking cross-
lingual LSC Detection resources. SemEval 2020
Task 1 datasets consist of small sets of target words,
i.e., the number of target words for English, Ger-
man, Latin, and Swedish is 37, 48, 40, and 31,
respectively. The example of the Latin language
highlights that XL-LEXEME can perform poorly
on languages that are underrepresented in the train-
ing set of XLM-R and not covered by the WiC
dataset. Generally, at the moment is not possible to
state precisely how and how much XL-LEXEME
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SemEval-2020 Task 1 Subtask 2 Leaderboard Temporal BERT
cross-encoder XL-LEXEME

Lang. UG_Student
_Intern

Jiaxin
&
Jinan

cs2020 UWB Count
baseline

Freq.
baseline

TempoBERT Temporal
Attention

EN 0.422 0.325 0.375 0.367 0.022 -0.217 0.467 †0.520 †0.752 0.757
DE 0.725 0.717 0.702 0.697 0.216 0.014 - †0.763 †0.837 0.877
SV †0.547 †0.588 †0.536 †0.604 -0.022 -0.150 - - †0.680 0.754
LA 0.412 0.440 0.399 0.254 0.359 †0.020 0.512 0.565 †0.016 -0.056

Avg. 0.527 0.518 0.503 0.481 0.144 -0.083 - - 0.571 0.583

Table 1: Results (Spearman correlation) on the SemEval-2020 Task 1 Subtask 2 test set. The symbol † indicates
there is no statistical difference with the correlation obtained by XL-LEXEME.

RuShiftEval Leaderboard
cross-encoder XL-LEXEME XL-LEXEME (Fine-tuned)

Dataset GlossReader DeepMistake UWB Baseline
RuShiftEval1 †0.781 †0.798 0.362 0.314 †0.727 0.775 0.799
RuShiftEval2 †0.803 †0.773 0.354 0.302 †0.753 0.822 0.833
RuShiftEval3 †0.822 †0.803 0.533 0.381 †0.748 0.809 0.842

Avg. 0.802 0.791 0.417 0.332 0.743 0.802 0.825

Table 2: Results (Spearman correlation) on the RuShiftEval test set. The symbol † indicates there is no statistical
difference with the correlation obtained by XL-LEXEME.

performance is affected by the language distribu-
tion in the XLM-R training set and the WiC dataset.
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A Hyper-parameters

Hyper-parameter Value
hidden act gelu
hidden dropout prob 0.1
hidden size 1024
initializer range 0.02
intermediate size 4096
layer norm eps 1e-05
max position embeddings 514
num attention heads 16
num hidden layers 24
position embedding type absolute
vocab size 250004
learning rate
cross-encoder 1e-05
XL-LEXEME 1e-05
weight decay
cross-encoder 0.01
XL-LEXEME 0.00
max sequence length
cross-encoder λ = 256
XL-LEXEME λ∗ = 128

Table 3: XL-LEXEME and cross-encoder hyper-
parameters.
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