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UNIVERSITY OF BARI ALDO MORO

Abstract
PhD Programme in Computer Science and Mathematics, XXXIII Cycle

Department of Computer Science

COMPUTATIONAL APPROACHES TO LANGUAGE CHANGE

by Pierluigi CASSOTTI

Language is the vital medium through which people communicate and ex-
press their needs. To make our communication meaningful, it is essential that
we use language in the most effective and efficient way. As humans evolve,
so too do languages, adapting to better encapsulate and convey information
content. The underlying dynamics and mechanics of language change are of-
ten intricate and difficult to disentangle. Linguistic studies tend to focus on
small samples, requiring high levels of skill and effort to consult and analyze
thousands of historical documents.

The computational interpretation and processing of natural language is a
complex endeavor. This complexity escalates when transitioning from a syn-
chronic to a diachronic, or across-time dimension. In the past few years, there
has been a significant upswing in interest towards computational strategies
for understanding language change. This surge can be attributed to two con-
verging phenomena: the remarkable growth in computational power and a
large surge in the availability of textual data.

The core objective of this thesis is to delve deep into computational meth-
ods for understanding Language Change, with an emphasis on Lexical Se-
mantic Change. This will be achieved by (i) systematically reviewing and
comparing current state-of-the-approaches relying on Temporal Word Em-
beddings on different languages and benchmarks covering different histori-
cal periods (ii) designing and implementing novel models nurtured on syn-
chronic data and evaluating their applicability in a diachronic context, (iii)
devising datasets and tools to set performance standards for these mod-
els and further linguistic-aided analysis, and (iv) offering methodological
perspectives on expansive, quantitative, longitudinal studies of Language
Change, highlighting the critical points and the advantages to be gained from
this type of analysis.

HTTP://WWW.UNIBA.IT
http://dottorato.di.uniba.it/
http://www.uniba.it/ricerca/dipartimenti/informatica
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The initial section of this thesis elucidates foundational concepts from
the field of Historical Linguistics and Natural Language Processing. Addi-
tionally, it offers a comprehensive overview of cutting-edge computational
strategies geared towards understanding Language Change and their conse-
quential applications in Culturomics. Then, the main contributions are pre-
sented and discussed in the last chapter of the thesis addressing the Research
Questions introduced in the first chapter.
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Chapter 1

Introduction

Languages constantly change over time, shaped by social, technological, cul-
tural and political factors that influence how people express themselves. Lan-
guage change is a phenomenon well-known in Linguistics and widely anal-
ysed in Historical Linguistics. Over time, tools and methods have been de-
veloped to analyse this phenomenon, including systematic categorisations of
the types of change, the causes and the mechanisms underlying the different
types of change. With the advent of the digital era and the resulting exponen-
tial increase in the amount of textual data, we have access to unprecedented
opportunities to analyse and understand the complex patterns of language
change.

Indeed, this vast amount of data can be used to feed computational mod-
els that, powered by the latest cutting-edge technological developments, of-
fer a new paradigm in language change, characterised by large-scale quan-
titative studies. Traditional linguistic methods, while informative, are often
based on small, carefully curated samples. Linguistic analysis using com-
putational models not only speeds up our understanding of how languages
change but also provides broader and more detailed insights, opening up the
study of vast corpora - from historical archives to social media feeds.

Not all languages change at the same pace, and the same language can
change at different rates over time. The increased ease and speed with which
we can now communicate digitally, removing all barriers between linguistic
and cultural communities, opens up new and novel scenarios of language
change. Tracking change in a timely manner requires high-rate snapshots of
the language and an explosion of time-sensitive combinatorial analysis that
is no longer within the reach of manual inspection. The comparison order
is magnified when, for example, social media is considered. The language
of social media is characterised by rapid and changing trends, which can
lead to an intensified rate of change in the lexicon, the number of changes in
meaning, and the introduction of new syntactic structures.
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Understanding language change carries profound implications that span
different domains. Linguistic changes reflect evolving cultural landscapes
and societies. When two cultures interact, they often exchange more than
goods and services; they exchange words, reflecting historical interactions.
For instance, the Maltese language has borrowed the words Allah and Gℏid
from Arabic, nowadays used by the Christian communities to refer to God
and Easter, respectively. Popular culture, including movies, music, and lit-
erature, can introduce and popularise new slang or terms. Words like selfie
were popularised by their frequent use in pop culture and have since become
a recognised part of the English lexicon. As societies evolve, so do their val-
ues. Once acceptable, words can become derogatory or outdated, leading
to a change in their use or meaning. For example, the term gay historically
meant happy or joyful, but its meaning has evolved over the past century, pri-
marily denoting one’s sexual orientation. Major social movements can lead
to linguistic shifts. The feminist movement, for instance, has influenced lan-
guage by promoting gender-neutral terms like firefighter instead of fireman
and chairperson instead of chairman.

Languages worldwide, including Scottish Gaelic, Quechua, Ainu, and
Komi, have experienced significant influences from dominant neighbouring
languages such as English, Spanish, Japanese, and Russian respectively. As
speakers of these languages become bilingual, often due to historical, polit-
ical, or societal pressures, they incorporate vocabulary, sentence structures,
and idioms from the dominant tongues. This borrowing is particularly ev-
ident in modern terminology related to technology, governance, and daily
life, leading to an evolution of these languages and, in some cases, concerns
about their preservation. Computational tools can map how languages in-
teract and identify changes led by words or structures borrowed from domi-
nant languages, highlighting areas where an endangered language may lose
its distinctiveness. By studying language change, psychologists and sociol-
ogists can better understand group dynamics, identity formation, and even
cognitive processes related to language comprehension and production.

The implications also affect the technological side. Natural Language Pro-
cessing (NLP) is the branch of artificial intelligence concerned with develop-
ing tools that enable computers to understand, interpret and generate human
language. NLP is concerned with transforming human language into a form
that machines can understand, involving tasks such as tokenisation (break-
ing down text into words or phrases), parsing (identifying the underlying
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syntactic structures of sentences), and word sense discrimination (recognis-
ing differences in the meanings of words).

The last decades has seen a shift from rule-based approaches to more
data-driven methods, particularly with the advent of deep learning. Mod-
ern NLP models, often based on neural networks, can process vast amounts
of textual data, learning patterns and structures without explicit program-
ming. It has advanced exponentially over the past few decades, enabling
machines to perform sentiment analysis, machine translation and chatbot in-
teractions. While these achievements are laudable, an essential aspect of hu-
man language that remains a challenge for NLP is its inherent and constant
change. As language changes, so must the computational models that at-
tempt to understand it. Thus, the intersection of computational approaches
and the study of language change becomes paramount.

NLP models trained on older data may become outdated, leading to re-
duced performance and inaccuracies, or conversely, models trained on mod-
ern data may be ineffective in handling historical data. Model adaptation is
not straightforward; as models become larger, involving billions of parame-
ters, updating requires strategies capable of learning new patterns without
forgetting the stored ones [242]. To ensure that these models remain robust
and relevant, it is crucial to understand how languages change over time
and to develop techniques to adapt models accordingly.

1.1 Research Questions

The objective of this thesis is to advance the state of the art regarding the
creation of Natural Language Processing tools and resources for Language
Change, with particular regard to Lexical Semantic Change. Following, we
report the core Research Questions will be answered in this thesis.

RQ1. How do different models perform across diverse languages and
datasets when subjected to benchmarks specifically designed for Lex-
ical Semantic Change Detection? We aim to evaluate the efficacy of
different computational models for Lexical Semantic Change Detection
(LSCD). Exposing these models to benchmarks tailored specifically for
LSCD, we can gain insights into their performance metrics across dif-
ferent languages and datasets. The underlying objective is to discern
which models are universally effective, which ones excel in particu-
lar linguistic environments, and the potential reasons for any observed
disparities in their performance.
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RQ2. To what extent are synchronic models equipped to understand and
track diachronic language changes? While synchronic models are not
primarily designed to work on historical corpora, we can explore their
adaptability and efficiency in tracking language change that occur over
time and consequently their efficacy on historical corpora. We seek
to understand the inherent capacities and potential limitations of syn-
chronic models when applied to diachronic analysis. The overarching
goal is to determine if, and how, these models can be harnessed or mod-
ified to study language change. In this thesis a synchronic model is pre-
sented that obtain state-of-the-art performance for the Lexical Semantic
Change Detection task.

RQ3. How can benchmarks and resources for Language Change be effec-
tively designed to ensure comprehensive and accurate results? The
development of reliable benchmarks and resources is crucial for ad-
vancing research in language change. This question delves into the
methodologies, criteria, and best practices for designing these tools. It
emphasizes the need for comprehensive coverage, ensuring that bench-
marks encompass diverse linguistic phenomena and datasets, and that
the results generated are both accurate and replicable. This exploration
will also consider potential pitfalls and challenges in benchmark design
and how they can be circumvented.

RQ4. How effectively can large-scale longitudinal quantitative studies cap-
ture and quantify the influence of socio-cultural events on language
change over time? Computational approaches to Language Change
unveil a new paradigm of Language Change analysis, allowing for
large-scale longitudinal quantitative studies. From a technical perspec-
tive this kind of studies provide challenging aspects requiring to anal-
yse complex interactions between language and social-cultural events
underlying the history. We aim to understand the methodologies best
suited for analyzing such vast amounts of data and the potential chal-
lenges, such as nuances or biases. We asses this by testing the feasibility
and value of using newspaper archives as a primary resource for study-
ing language change in the context of societal and cultural shifts.

1.2 Contributions

The contributions discussed in this thesis can be summarized as follows:
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Temporal Aligned Language Models Various approaches based on the
temporal alignment of language models for Lexical Semantic Change Detec-
tion have been proposed over the years. In the first contribution, we propose
a systematic classification of the approaches proposed in the literature and
analyse the performance of these models on two benchmarks involving five
languages: English, Swedish, German, Latin and Italian. Furthermore, we
evaluated graded Lexical Semantic Change Models using thresholds based
on the Gaussian distribution of the cosine similarity. We considered several
models: Dynamic Word Embeddings, Temporal Random Indexing, Tempo-
ral Referencing, OP-SGNS and Temporal Word Embeddings with a Compass.
The review of the approaches and the results obtained are reported in [41],
published in the Italian Journal of Computational Linguistics (IJCoL).

A second contribution describe the system we proposed to the shared
task SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection
[43]. The system reached the first place in the binary SubTask for Swedish.
We reported a comparison of some of the most recent approaches to model
Lexical Semantic Change with Temporal Word Embeddings, and we experi-
mented with an automatic unsupervised procedure to classify changing and
stable words. Results show that implicit alignment works generally better in
modelling the lexical semantic change.

Finally, the last contribution addresses a longitudinal study for the analy-
sis of the Lexical Semantic Change, involving several models, including Dy-
namic Word Embeddings, Dynamic Bernoulli Embeddings, Procrustes and
Temporal Random Indexing. The results indicate that detecting lexical se-
mantic changes is a intricate endeavour. Systems identify a significant num-
ber of change points, which in turn impacts performance. A qualitative ex-
amination of word time-series reveals that certain change points are identi-
fied slightly before or after the precise time frame. This observation neces-
sitates deeper linguistic analysis to comprehend the underlying causes. The
work [39] was published in the proceedings of the 4th Workshop on Natural
Language for Artificial Intelligence (NL4AI 2020).

Linguistic Knowledge Graph Databases Graph databases are a straight-
forward schema-less technology for storing knowledge graphs. We exploit
the GraphBRAIN Schema (GBS) format to describe a new time-sensitive Lin-
guistic Knowledge in a graph database.

We first introduce a new time-sensitive model of linguistic knowledge
based on graph databases, the work was presented at the 1st Workshop on
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Artificial Intelligence for Cultural Heritage (AI4CH 2022) [15]. This model
can be used to investigate word histories and conduct etymological research,
as well as the analysis of quantitative patterns in the distribution of word
senses not only across time (semantic change), but also according to the au-
thors of the texts and other textual features (semantic variation). Moreover,
the model’s ability to connect word meaning instances in texts with lexical
concepts also enables applications in the growing area of word sense dis-
ambiguation from historical texts, which aims to associate the most likely
meaning of a word to an instance of usage of that word in a historical text
[21, 141].

Then, we introduce an application of the proposed LKG for Latin data.
Focusing on the case of Latin, a high-resource language among historical lan-
guages, we present initial results from integrating Latin corpus data, Latin
WordNet, and Wikidata into a graph database via a GraphBRAIN Schema
and show the potential offered by this model for diachronic semantic re-
search. Differently from previous approaches, it gives rise to explainable
results since we take advantage of explicit relationships modelled as graphs.
The outcomes and the methodology used is desribed in McGillivray et al.
[154] and McGillivray et al. [153] published respectively in the proceedings
of the 19th Italian Research Conference on Digital Libraries (IRCDL 2023) and
in the proceedings of the 4th Conference on Language, Data and Knowledge
(LDK 2023).

Benchmarking Unsupervised Lexical Semantic Change Detection The
first contribution concerns the presentation of an Italian diachronic corpus
based on the newspaper “L’Unità”. The corpus spans 67 years (1948-2014)
and is provided both in plain text and in an annotated format that includes
PoS-tags, lemmas, named entities, and syntactic dependencies. The corpus
and the pre-computed data represent a valuable source of information both
for linguists and researchers interested in diachronic analysis of the Italian
language, and for historians, political scientists, and journalists as a digital
resource enriched with automatic text analysis technologies. The paper [14]
is published in the proceedings of the Seventh Italian Conference on Com-
putational Linguistics (CLiC-it 2020) and introduces the methodology used
for the collection and processing of textual documents. In particular, impor-
tant steps in the processing of historical corpora are introduced, including
the handling of possible OCR errors.
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Another contribution concerns the construction of a benchmark for the
detection of lexical semantic change for the Italian language. The goal of
the benchmark is to develop systems able to automatically detect if a given
word has changed its meaning over time, given contextual information from
the corpora. We created two corpora for two different time periods T1 and T2,
and we manually annotated a set of target words that change/do not change
meaning across these two periods. Which work presents details concerning
the selection of candidate target words, the finding of the uses of these words
and the annotation of the meaning of the uses. An annotation method is then
introduced that differs from those found in the literature and is shown to be
effective. This is evident from the fact that the models obtain better results
when applied to this benchmark compared to other benchmarks. The bench-
mark was used to evaluate systems at the shared task DIACR-Ita, hosted
in the Seventh Evaluation Campaign of Natural Language Processing and
Speech Tools for Italian (EVALITA 2020) [18].

We introduce Diachronic Engine (DE), a tool for the analysis of Lexical
Semantic Change. The paper was presented in the Seventh Italian Confer-
ence on Computational Linguistics (CLiC-it 2020) [40]. DE integrates and
extends current tools for corpus analysis enabling the study of corpus di-
achronic features. DE includes tools not included in other systems, such as
time-series and change points detection based on state-of-the-art models for
the analysis of semantic change. The tool is foundational in analyses based
on traditional historical linguistics approaches, offering the possibility of in-
vestigating changes in detail through the inspection of concordances.

Lexical Semantic Change Detection The first contribution introduce XL-
LEXEME, a model for LSC Detection. XL-LEXEME is pre-trained on a large
WiC dataset to mirror sentence-level encoders focusing on specific words in
contexts. We evaluated our model on two Lexical Semantic Change Detection
datasets: SemEval-2020 Task 1 and RuShiftEval. XL-LEXEME outperforms
state-of-the-art models for LSC Detection in English, German, Swedish, and
Russian datasets, with significant differences from the baselines. The XL-
LEXEME effectiveness and efficiency make it reliable for LSC Detection on
large diachronic corpora and has become the defacto standard to beat in
LSCD. The model marks a new direction in the field of the study of lexical
meaning change by achieving significantly higher levels of correlation with
the test set than approaches so far presented in the literature. The model
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demonstrates its effectiveness although it was trained on modern data, sup-
porting the thesis that synchronic models are effective in recognizing lan-
guage change. The paper describing XL-LEXEME [45] has been published
in the proceedings of 61st Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2023).

A second contribution concerns an analysis of contextual models with
particular emphasis in studying how much information learned during train-
ing affects the relationship between the target word and its context. We
conduct analysis via a replacement schema, which generates replacement
sets with graded lexical relatedness, allowing examination of the models’
degree of contextualisation. Using this schema, we also propose a novel ap-
proach to lexical semantic change detection and are able to surpass the results
achieved by existing state-of-the-art models in the task of LSC. The replace-
ment schema gives us an automatic way of providing labels for the change
that has occurred, offering us a way to do explainable semantic change de-
tection. The paper was submitted and currently under review to the 18th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2024).

Computational Social Science and Cultural Analytics The use of auto-
matic methods for the study of lexical semantic change (LSC) has led to the
creation of evaluation benchmarks. Benchmark datasets, however, are inti-
mately tied to the corpus used for their creation questioning their reliability
as well as the robustness of automatic methods. This contribution inves-
tigates these aspects showing the impact of unforeseen social and cultural
dimensions. We also identify a set of additional issues (OCR quality, named
entities) that impact the performance of the automatic methods, especially
when used to discover LSC. The paper describing the experiments and the
results were published in [19].

The last contribution investigates the usage of gender-specific forms of
occupational titles in the Italian language in a diachronic corpus of 3 billion
tokens extracted from two popular Italian newspapers. The work [42] was
published in the proceedings of the Eighth Italian Conference on Computa-
tional Linguistics (CLiC-it 2021). The hypothesis is that the usage of gender-
specific forms might be influenced by socio-cultural aspects. We automat-
ically collect a set of occupational titles and perform a diachronic analysis
exploiting the frequency of gender-specific forms. Results show a correla-
tion between changes in the usage of gender-specific forms and socio-cultural
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events. Through this analysis, we show that there are significant changes in
the way newspaper articles refer to the masculine and feminine form of an
occupational title and that they are consistent with the occurring historical
events, such as changes in the employment policy. Moreover, we performed
a more fine-grained analysis by extracting the most influential figures that
have guided this shift.

1.3 Outline of the thesis

The thesis outline is structured as follows:

Chapter 2 introduces the reader to the basic concepts discussed in the rest of
the thesis: those related to Historical Linguistics and Natural Language
Processing.

Chapter 3 contains a review of the state of the art related to the main de-
sign choices for developing Lexical Semantic Change Models. It dis-
cusses the evolution, the challenges, and the solutions that have been
developed for Language Change, including state-of-the-art approaches
and datasets for Lexical Semantic Change and applications of compu-
tational approaches to Language Change

Chapter 4 through 8 discuss the contributions presented in Section 1.2 in
detail.

Chapter 9 concludes the thesis by summarizing the outcome of each contri-
bution, provides an answer to each of the research questions presented
in 1.1, and outlines lessons learned and avenues for future research.
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Chapter 2

Background

2.1 Historical Linguistics

2.1.1 Introduction

Historical linguistics is a branch of linguistics that studies the history and
development of languages. It looks at how languages change over time,
analysing and describing different language communities and revealing pat-
terns of change within languages and between language groups. It also in-
cludes the study of etymology, with the aim of reconstructing the origins of
words. Historical linguistics describes and analyses changes of all kinds, e.g.
phonological, syntactic, morphological and orthographic.

At the phonological level, language change can involve changes in the
sounds that make up words. The Great Vowel Shift was a historical sound
change that occurred in the English language between 1400 and 1700 and is
considered one of the most important events in the history of English. It in-
volved a shift in the pronunciation of long vowels and the silencing of some
consonants [127]. Syntactically, language change can involve changes in the
way words are put together to form sentences. For example, in English the
word do has undergone a process of grammaticalisation in which verbs or
nouns become grammatical markers. The use of do as an auxiliary verb be-
gan in the fourteenth century and was mainly used to form negations and
questions [185].

At the semantic level, language change can involve changes in the mean-
ing of words. For example, the word graft, initially used in the horticultural
field, has over time been extended into medical terminology to refer to a sur-
gical procedure. Finally, the most significant semantic shift is the use of graft
to describe illegal or unethical practices, especially in politics and business.
Morphological changes may involve changes in the way words are inflected
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to show grammatical relationships. For example, in Old English nouns were
case inflected, but in Modern English nouns are no longer case inflected.

Historical linguistics has developed a variety of tools and methods to un-
ravel the evolution of languages. At the heart of these investigations is the
comparative method, a cornerstone of historical linguistics, which systemati-
cally compares languages to uncover common ancestry and trace semantic
and phonological trajectories over time. Internal reconstruction complements
this by examining inconsistencies within a single language, revealing histor-
ical layers and meanings that have shifted over time.

A powerful lens for understanding semantic change is the semantic field
theory, which involves groups of words that are semantically related. This
theory posits that the semantic fields of a word within a language are not
static but dynamic, subject to cultural and social currents that can reshape
entire semantic domains.

Glottochronology [215] is a method used by linguists to estimate the time
when two languages diverged. The central idea behind glottochronology is
that the core vocabulary of languages changes at a constant rate over time.
By comparing the core vocabulary of two related languages and determining
how much of this basic vocabulary they still share, linguists can calculate an
approximate time at which the two languages began to diverge. The method
is based on the Swadesh List, a list of words considered resistant to borrow-
ing and change, such as personal pronouns, body parts and natural elements.

To map the relationships between languages and capture the complexity
of linguistic evolution, linguists have developed models such as tree dia-
grams, which depict languages as branches growing from a common trunk
representing their common proto-language. But the tree model, with its neat
branches, sometimes oversimplifies the intricacy of language contact and
borrowing. In response, the wave model captures the ripple effects of lin-
guistic change emanating from multiple centres, recognising that languages
can share features through contact, not just common ancestry. This model is
particularly useful for illustrating the diffusion of grammatical and semantic
features across geographical and linguistic boundaries.

The linkage model [72] goes a step further, illustrating the web of connec-
tions between languages and dialects within a language family. It recognises
that languages do not simply diverge, but can converge and diverge again
over time, forming a complex network of linguistic relationships that chal-
lenges the notion of linear, tree-like evolution.
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2.1.2 Semantic Change

Onomasiological and semasiological change

Two main approaches to understanding semantic change are semasiolog-
ical and onomasiological perspectives. Semasiological change focuses on
how meaning changes while form remains relatively constant, but allows
for phonological or morphosyntactic change. In contrast, onomasiological
change focuses on changes in the linguistic forms used to express a particular
concept. Lexical replacement is a common onomasiological process in which
a new word or phrase is created to replace an existing one. For example, the
Old English term "eorþe" gave way to the Middle English world, demonstrat-
ing lexical replacement reflecting changes in language and worldview.

Although semasiological and onomasiological changes are often dis-
cussed separately, they are inherently related. Semasiological changes can
lead to onomasiological changes and vice versa, highlighting the dynamic
relationship between meaning and form in language evolution. Consider the
change of the term gay from its original meaning of happy to its contemporary
sense of homosexuality. This semasiological change has led to onomasiolog-
ical changes, with the emergence of new terms such as homosexual to refer
specifically to same-sex attraction.

Taxonomies of semantic change

Several different taxonomies of semantic change have been proposed in the
linguistic literature, each of which sheds light on different facets of how
meanings evolve over time. The earliest structured attempt to classify se-
mantic change can be traced back to the work of Reisig [184], who provided
a distinction of semantic change based on synecdoche, which deals with shifts
between part and whole; metonymy, which deals with shifts between cause
and effect; and metaphor, where meanings shift based on perceived similari-
ties.

Building on the early foundations, Paul [167] presented a more nuanced
classification, recognising generalisation, where the meaning of a word is
broadened, and specialisation, where it is narrowed. Darmesteter [53]’s con-
tributions further refined the understanding of metaphor and metonymy,
introducing the concept of narrowing and widening of meaning. This ex-
pansion and contraction of the word is expressed in terms of the change be-
tween whole and part. Bréal [33] extended these ideas by discussing the
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narrowing of meaning, where the meaning of a word becomes more spe-
cific, and the widening of meaning, where the opposite occurs. He also dis-
cussed metaphor and introduced the concept of thickening of sense, where
meanings shift from the abstract to the more concrete. Stern [212]’s taxon-
omy is more comprehensive, including terms such as substitution, analogy,
truncation and nomination, among others. This approach showed a keen
understanding of the multifaceted nature of semantic change, recognising
that factors such as changes in object use, knowledge and social attitudes all
play a role. Bloomfield [30]’s taxonomy is one of the most widely recognised
in the English-speaking academic world. It includes narrowing and widen-
ing, metaphor, metonymy and synecdoche, as well as hyperbole and meiosis,
which deal with changes in the intensity of meaning. Bloomfield’s inclusion
of degeneration and elevation shows an awareness of the value judgements
often attached to semantic shifts. Ullmann [227]’s distinction between the
nature and consequences of semantic change represented a more analytical
approach, recognising the effects of metaphor and metonymy as well as pro-
cesses such as folk etymology and ellipsis. His taxonomy also takes into
account the consequences in terms of broadening or narrowing of meaning
and the qualitative shifts of improvement and degradation.

Finally, Blank [29]’s categorisation, increasingly accepted in recent years,
offers a sophisticated framework that includes metaphor, metonymy and
synecdoche, as well as specialisation and generalisation. Blank introduces
cohyponymic transfer, antiphrasis, auto-antonymy and auto-converse, offer-
ing a detailed view of the horizontal, vertical and even opposite shifts that
words can undergo.

2.2 Natural Language Processing

2.2.1 Introduction

Natural Language Processing (NLP) refers to the analysis of natural language
text to infer the lexical and semantic characteristics contained within it. NLP
attempts to imbue the computer with language skills in order to design com-
puter programs and systems to assist humans in linguistic tasks, such as au-
tomatic translators, spell checkers, document and knowledge management;
to develop computer systems that use natural language to interact with hu-
mans in a natural way, to automatically extract information from texts or
other media, and to dynamically extend its own linguistic competence.
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Text processing is necessary for the realization of functionalities that bring
the machine closer to man and that enable new ways of interaction with
computers. The text processing takes place on different levels which are de-
pendent on each other. The aim is to elaborate the language starting from
a purely syntactic point of view up to a more semantic level. The seman-
tic level depends on previous elaborations and generally cannot ignore the
syntactic analysis of the text; therefore, the processing starts from a purely
symbolic level (phonemes, letters) up to a more semantic level (meanings).
Five basic levels can be identified:

• sounds and letters: everything related to the articulation and decoding
of the sounds of a language

• lexicon and morphology: knowing the words of a language, their struc-
ture and organization

• syntax: composing words into complex constituents semantics: assign-
ing meanings to simple and complex linguistic expressions

• pragmatics: using sentences in contexts, situations and ways appropri-
ate to communicative purposes

The study of the first level is necessary for all those applications that must
understand sounds and interpret them in letters (e.g. recognition of spoken
language) or that must produce sounds starting from the written text. By
lexicon and morphology we mean the identification of the words that make
up the language, or the search for lemma and lexemes. By the lemma, we
mean each of the entries to which the single definitions of a dictionary are
dedicated and by lexeme the minimum unit with meaning. The morpholog-
ical analysis deals with identifying the gender of a word (singular/plural) or
the ways and times of a verb.

Syntax analysis aims to identify the parts of speech, i.e. part of speech:
verbs, nouns, adjectives, adverbs, prepositions, pronouns, etc. identify
groups of words that represent a single meaning: hot dog, look for identify
the elementary parts of speech: the nominal parts and the verbal parts (shal-
low parsing) derive the complete parse tree (full parsing) Semantic analysis
aims to add semantics to the identified parts-of-speech.

One of the common strategies is to associate a vector representation to
the words, exploiting the distributional hypothesis: words that appear in the
same contexts are more similar. A geometric space is created, which tends
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to bring the vectors of the words that appear in the same contexts closer to-
gether, e.g. in the resulting vector space vectors of similar words are close to
each other. In the following sections, the basic operations of text processing
will be illustrated in detail, e.g. NLP basic pipeline:

• Tokenization

• Stop-words removal

• Part-Of-Speech tagging

• Semantics modelling

Tokenization Tokenization is the process of dividing text into smaller units
called tokens, and its complexity depends on the level of abstraction consid-
ered. A graphic word is defined as a continuous alphanumeric string sepa-
rated by spaces, which may include hyphens and apostrophes but not other
punctuation. When tokenization is based on graphic words, the task involves
identifying all substrings separated by non-alphanumeric characters. For in-
stance, "28/05/2005" would be split into three tokens ("28", "05", "2005"), los-
ing the understanding that they collectively represent a date. The same issue
arises for proper names and complex numbers. Implementing a more ab-
stract tokenizer involves recognizing compound words with apostrophes or
hyphens, as well as identifying dates, entities, and numbers using regular ex-
pressions. It also requires understanding the roles of non-alphanumeric char-
acters, which can vary across languages. For example, superscripts differ in
function between Italian and English. Additionally, language-specific strate-
gies must be considered; German and some Asian languages lack spaces be-
tween words, making tokenization more challenging.

Modern tokenization techniques have evolved to address the challenges
presented by various languages and complex text structures. Methods like
SentencePiece [112] and Byte-Pair Encoding (BPE) [207] have gained popu-
larity for their ability to handle a wide range of languages and tokenization
tasks. SentencePiece is a data-driven approach that divides text into smaller
units, treating entire sentences or subword units as tokens. This technique is
particularly effective in languages with no clear word boundaries or where
tokenization rules may be ambiguous. BPE, on the other hand, operates by
iteratively merging frequent character sequences to create subword units.
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Stop-words removal Not all tokens contribute to the informational con-
tent of the text. To address this, a technique called stopword removal is em-
ployed, involving the identification and removal of common, uninformative
words like articles, prepositions, and conjunctions. These words can intro-
duce noise into the representation of textual content.

By removing stop-words, the size of the dictionary is reduced by approx-
imately 40%, leading to improved performance. This is because during the
matching process between a query and a document, non-informative tokens
are disregarded. Nevertheless, complete removal of all stop-words can be
challenging, as some of them might contain information. In such cases, a
common approach is to use a limited stop-word list and leverage language
statistics to manage these words more effectively.

Creating a stop-word list typically involves a combination of linguistic
knowledge and statistical analysis. The goal is to strike a balance between
reducing noise and retaining essential information in text representations.

Lemmatization and stemming Another crucial text processing stages in
Natural Language Processing are lemmatization and stemming. Lemmati-
zation involves reducing words to their base or dictionary form, known as
the lemma. This process helps to capture the core meaning of a word by re-
moving inflections and variations. For example, the words running, ran, and
runs would all be lemmatized to run. Stemming, on the other hand, aims
to reduce words to their root or stem by removing common suffixes. While
both lemmatization and stemming contribute to reducing the dimensionality
of the text data and aiding in information retrieval, lemmatization generally
produces more linguistically accurate results compared to the more aggres-
sive stemming, which may sometimes result in non-dictionary words. The
choice between these techniques depends on the specific requirements of a
natural language processing task.

Part-Of-Speech tagging Part-of-Speech Tagging (PoS) is the process of as-
signing grammatical roles to words in a text. This involves associating each
token in the text with its appropriate part of speech, based on a language-
specific lexicon. When a word can take on multiple grammatical roles, it
becomes ambiguous, such as the word "watches" in English, which can be a
verb or a noun. Disambiguation is crucial, and it is achieved by analyzing
the lexical context of the word within the text.
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Named Entity Recognition Named Entity Recognition (NER) is another
essential aspect of natural language processing. NER is the process of identi-
fying and classifying named entities, such as names of people, organizations,
locations, dates, and more, within a given text. NER plays a vital role in in-
formation extraction, text summarization, and question-answering systems,
as it helps in pinpointing specific pieces of information within a text.

Modern NER and PoS Tagging approaches often leverage deep learning
models, such as Recurrent Neural Networks (RNNs) [193] and transformer-
based models like BERT [57], which are pretrained on large text corpora to
recognize and categorize named entities with high accuracy.

2.2.2 Computational Lexical Semantics

Distributional semantics

Most of the Natural Language Processing algorithms that deal with seman-
tics rely on the distributed hypothesis, as Firth puts it, “you shall know
a word by the company it keeps ” [71]. In Distributed Semantic Models
(DSM), words are mapped to high dimensional vectors in a geometric space.
The first DSMs were count-based, they compute word vectors by count-
ing how many times a word appears in a context, sentence, paragraph or
document, according to the chosen granularity. Early DSMs merely com-
pute word co-occurences using weighting schemas such as tf-idf (term fre-
quency and inverse document frequency) in order to improve the repre-
sentation and overcome issues related to Zipf distribution of words [100].
Since this type of representation are affected by sparsity issues, dimension-
ality reduction techniques are introduced such as Latent Semantic Analy-
sis (LSA) [126]. On the other hand, prediction-based models use a continu-
ous representation of word embeddings to predict the probability distribu-
tion P = (wt|context) ∀t ∈ V of a target word wt given the context words
context, for all the words in the vocabulary V .

Neural networks started to become dominant in this field with Word2Vec
[157], which was introduced mainly to increase the efficiency and scale the
dimensionality reduction stage of traditional approaches keeping theoreti-
cally the same efficacy in the representation [130]. Following Word2Vec, re-
search interest focuses on overcoming two main drawbacks of these kind of
approaches: the collapsing word semantics in a single point and the absence
of the modeling of word position in the sentence. Modeling sequences in
Neural Networks always posed a challenge in dealing with arbitrary long
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sequences. For instance, Recurrent Neural Networks (RNNs) [193], which
are usually employed to deal with sequences, suffer of a problem called van-
ishing gradient, i.e. the Long-short term Memory (LSTMs) [92] overcomes
this issue exploiting a forget-gate mechanism. ELMo (Embeddings from Lan-
guage Model) is an example of language model based on Bi-LSTM (Bidirec-
tional LSTM). Althought, the LSTM improved the RNNs they still struggling
with handling long-range dependency.

Contextualized Representations

The attention mechanism represents a new paradigm to sequence modeling,
allowing to overcome previous issues underlying RNN models. Transformer
[228] is an encoder-decoder Neural Network architecture which exploits the
attention mechanism to elaborate sequence-to-sequence tasks. While several
different fields of AI benefit from the introduction of Transformers, NLP is
the one which has seen a major escalation. BERT (Bidirectional Encoder Rep-
resentations from Transformers) [58] is the first example of use of Trasform-
ers for NLP tasks. In particular, BERT only uses the encoder component of
the Transformer architecture and exploits two specific training objectives for
language modeling: Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). After BERT, several different variants were proposed, such
as RoBERTa [138], DistilBERT [198], ALBERT [125], and XLM-RoBERTa [51].

While BERT-based models can solve multiple traditional NLP tasks, they
are not suitable for generation tasks, i.e. sequence to sequence tasks, since
they miss the decoder component of the original Transformer architecture.
For instance, T5 [179] and BART [133] are extension of BERT-based models
involving the autoregressive decoder as in the original Transformer archi-
tecture. The GPT (Generative Pre-trained Transformers) [34] instead only
employ the autoregressive decoder. The capabilities of models like T5, BART
and GPT are heavily influenced by the the size of the model itself, i.e. number
of layers and consequently the number of parameters of the model. While the
pretraining of these models can be expensive in terms of time and resources,
results show that the larger the model, the higher the performance. Genera-
tive models can solve traditional NLP task in zero-shot or few-shot learning
settings with results above state-of-the-art results. With the introduction of
these models the prompting paradigm [136] become prevalent, which better
suits for generative models.
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Sense modelling

Word Sense Disambiguation [163] is a Natural Language Processing task
with a long history and is extremely interesting for the Computational Lin-
guistics community. In Word Sense Disambiguation (WSD), the goal is to
disambiguate each word occurrence assigning to it the correct sense from a
predefined sense inventory, such as WordNet [158]. The strategies for tack-
ling WSD can be categorized mainly into supervised methods, which treat it
as a classification task where the algorithm learns from a labeled dataset to
predict the correct sense of new instances, and knowledge-based approaches
that rely on databases like WordNet to infer the meaning based on semantic
relationships.

The introduction of contextualized models, such as BERT, allowing the
representation of a word in different contexts, steers the research focus to
new tasks, such as the Word in Context (WiC) task [172].

WSD and the WiC task are highly related: while the former models in an
explicit way the relationship between the target word and its sense (taken
from a predefined sense inventory), the latter reduces it to a binary task. The
WiC task requires determining if a word occurring in two different sentences
has the same meaning or not. In recent years, there has been a growing in-
terest in the WiC task, demonstrated by the creation of several different re-
sources and shared tasks covering more than 20 languages.

Several datasets for the WiC task have been proposed throughout the
years: the first one [172] being the proposal of the WiC task, which also came
along with a dataset but was limited to English. For this reason, it was fol-
lowed by the XL-WiC [181] dataset which tried to tackle this issue by taking
into account a total of 15 languages. Next, the MCL-WiC [144] was the first
WiC dataset to introduce the Cross-lingual task. The main motivation behind
this particular choice was to cover scenarios where systems have to deal with
different languages simultaneously, further highlighting the importance of
this task in real-world applications. With AM2iCo [137], the main aim was
to focus on low-resource languages and to ensure participating models must
consider both the target word and the context to achieve good performances.
Finally, in CoSimLex [9], the task is extended to pairs of words that appear in
a shared context, and the goal is to determine to which degree they refer to
the same concept. This is done to capture the word polysemy as well as the
context-dependency of words.

The Lexical Substitution task model the word’s senses using another per-
spective. Lexical substitution aims to generate words that can replace a given
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word in a textual context. For instance, the word car in a sentence can be
replaced with automobile, bike, or motor vehicle, depending on the desired nu-
ance.

The challenge for the Lexical Substitution task has been the scarcity of
annotated data, which has limited the use of large pre-trained models in a
supervised context. ALaSca (Automated approach for Large-Scale Lexical
Substitution) [121] is a dataset proposed to address this limitation by gen-
erating large-scale datasets for English lexical substitution, enabling the full
potential of neural architectures like transformers to be utilized for the task.
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Chapter 3

State of the art in Computational
Approaches to Semantic Change

3.1 Benchmarks for Lexical Semantic Change

Several data sets and tasks are used to evaluate LSC models. Common tasks
in which LSC models are evaluated are: (i) solving temporal analogies, which
consists of detecting word analogies across time slices; (ii) lexical semantic
change detection in a fixed target set, which requires assigning a label (stable
or changed) to each word in a predefined set; (iii) lexical semantic change
ranking, which ranks a target set of words according to their degree of se-
mantic change; (iv) lexical semantic change discovery.

In the following, we describe LSC datasets for binary classification, rank-
ing and discovery. The statistics of the datasets are given in Table 3.1.

Language Time periods Diachronic Corpus # targets Reference

EN C1: 1810 – 1860
C1: CCOHA, C2: CCOHA 46 [204]

C2: 1960 – 2010

SV C1: 1790 – 1830
C1: Kubhist, C2: Kubhist 44 [218]

C2: 1895 – 1903

DE C1: 1800 – 1899
C1: DTA, C2: BZ+ND 50 [203]

C2: 1946 – 1990

LA C1: 200 – 0
C1: LatinISE, C2: LatinISE 40 [152]

C2: 0 – 2000

ES C1: 1810 – 1906
C1: PG, C2: TED2013, NC, MultiUN, Europarl 100 [238]

C2: 1994 – 2020

RU
C1: 1700 – 1916

C1, C2, C3: RNC 111 [114]C2: 1918 – 1990
C3: 1992 –2016

NO C1: 1929 –1965
C1: NBdigital, C2: NBdigital 40 [119]

C2: 1970 – 2013

NO C1: 1980 – 1990 C1: NBdigital, C2: NAK 40 [119]
C2: 2012 – 2019

ZH C1: 1954 – 1978
C1, C2: People’s Daily 40 [46]

C2: 1979 – 2003

TABLE 3.1: LSC benchmarks for Graded Change Detection
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SemEval 2020 Task 1 is the first task on unsupervised lexical-semantic
change detection in English, German, Swedish and Latin. SemEval 2020 Task
1 [205] addresses the lack of a systematic approach for the evaluation of au-
tomatic methods for diachronic language analysis by proposing a common
evaluation framework consisting of two tasks and covering historical corpora
written in four different languages, namely German [240, 221], English [4],
Latin [150] and Swedish [31]. Given two corpora C1 and C2 for two periods
t1 and t2, Subtask 1 requires participants to classify a set of target words into
two categories: words that have lost or gained senses from t1 to t2 and words
that have not, while Subtask 2 requires participants to rank the target words
according to their degree of lexical-semantic change between the two peri-
ods. For the annotation process, target words are selected based on whether
they changed in meaning over time, using historical and etymological dictio-
naries as references. The annotators, who are native speakers and university
students, are then asked to judge the semantic relatedness of the sampled
uses of the target words. Relatedness is determined on a scale from identi-
cal to unrelated based on the context of use [200]. Special attention is given to
Latin, due to the lack of native speakers, using a different approach where an-
notators compared word usage with dictionary sense definitions. The labels
for evaluation, both binary and graded, are derived from the sense frequency
distributions of the target words. These distributions represented how often
different senses of a word are used. An annotated graph G(V,E) is obtained
for each word, where the vertices V represent the uses and the edges E indi-
cate the relatedness of pairs of uses. Each graph is clustered using correlation
clustering [11] to create usage graphs representing the semantic relatedness
between word uses over time. Change scores are then calculated from these
graphs to determine the degree of semantic change for each word. Finally,
teams are scored on the accuracy of their predictions against hidden labels
for Subtask 1 and Spearman correlation for Subtask 2.

RuShiftEval [115] is a shared task for detecting semantic shifts in Russian.
The goal of the task is to detect changes in the meaning of Russian words over
time, using three subcorpora from different periods (pre-Soviet, Soviet and
post-Soviet). The RuShiftEval dataset consists of 111 Russian nouns, and par-
ticipants have to rank them according to the degree of meaning change ob-
served in the three different periods. This shared task introduced two novel
aspects with respect to SemEval 2020 Task 1 [205], namely the splitting of the
annotated semantic change dataset into more than two time periods and a
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training set.
In particular, out of the 111 Russian nouns, 99 are used in the test set and

12 are provided in the development set. These nouns are manually annotated
to assess the degree of change in their meaning in three time pairs: pre-Soviet
to Soviet, Soviet to post-Soviet, and pre-Soviet to post-Soviet.

The annotation is crowdsourced, following the DuReL framework [200].
Annotators score two sentences containing a target word from different time
periods. The scores range from 1 to 4, with 1 indicating that the senses are un-
related and 4 indicating that they are identical. The individual scores are then
averaged to produce a mean semantic relatedness score, known as COMPARE,
which reflects the degree of semantic change - closer to 1, the stronger the
change.

The task is structured as a ranking problem; no binary decisions are made
about whether a word changed its meaning. Each word had to be assigned
three semantic change scores, one for each pair of time periods. Lower scores
indicated stronger changes, while higher scores indicated weaker changes.
The systems are evaluated using Spearman rank correlations between the
system-generated word rankings and the manually annotated gold standard
rankings.

LSC Discovery [239] is a shared task on the discovery and detection of se-
mantic changes in Spanish. The aim of the task is to detect and discover
semantic changes in the Spanish language. The task is divided into two
phases: Graded Change Discovery and Binary Change Detection. It intro-
duces a new approach by requiring predictions and evaluations for all the
vocabulary words in the corpus, rather than just a pre-selected set of target
words. The evaluation is carried out on two reference subcorpora, the Old
and the Modern Corpus. The time reference is 1810-1906 for the Old Corpus
and 1994-2020 for the Modern Corpus. The text is extracted from various
sources, including Project Gutenberg and OPUS, and contains both raw and
lemmatised versions of the texts.

Annotators, who are native Spanish speakers with diverse backgrounds,
used the DURel framework to assess the semantic relatedness of word usage
pairs. The results are represented in Word Usage Graphs (WUGs), which
are then clustered to interpret changes in word senses over time. A total of
4385 words are considered for the graded change detection task, and a subset
of 100 words are annotated for semantic change. Of these, 20 are discarded
due to low inter-annotator agreement. The remaining 80 words are split into
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two subsets, i.e. 20 words are used for the development set and 60 for the
evaluation set.

For Graded Change Discovery, participants ranked words from the di-
achronic corpus pair based on the degree of change between the two time
periods. The actual degree of semantic change is measured by the Jensen-
Shannon divergence between word sense frequency distributions derived
from human-annotated word usage samples. For binary change detection,
participants classified words into two categories: no change or change. The
classification is based on whether the words have gained or lost sense be-
tween two time periods. The binary labels are determined from the fre-
quency distributions of the word senses.

NorDiaChange [120] is the first dataset dedicated to the study of di-
achronic semantic change in Norwegian. The dataset contains two subsets of
about 80 Norwegian nouns, manually annotated for graded semantic change.
These subsets reflect changes over time periods that are important in Nor-
wegian history, such as pre- and post-war events, the discovery of oil and
gas, and technological advances. The dataset is developed using the DURel
framework and is based on two large Norwegian historical corpora. The cor-
pora used to support this dataset are the NBdigital corpus from the National
Library of Norway and the Norwegian Newspaper corpus, which cover a
range of texts including books, reports and news articles in both Bokmål and
Nynorsk. The two subsets within NorDiaChange compare the periods 1929-
1965 with 1970-2013 (Subset 1) and 1980-1990 with 2012-2019 (Subset 2).

The target words for annotation are chosen on the basis of the authors’
linguistic intuition as native Norwegian speakers and existing linguistic re-
search. These words are expected to have undergone semantic changes dur-
ing the specified time periods. The annotation is carried out by three native
Norwegian speakers with expertise in linguistics or language technology.

In a qualitative analysis of the annotated data, the annotators and authors
review the semantic graphs and word usage clusters to determine which
senses are clustered and how. This process highlighted several cases where
word senses had shifted significantly, such as stryk shifting from rapids to fail,
and kanal evolving from channel to include TV and radio channels. The dataset
contains both binary and graded change scores for each word.

ZhShiftEval is the first dataset for assessing semantic change in Chinese,
particularly in the context of Reform and Opening up, covering a period of
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50 years in modern Chinese. The dataset is called ZhShiftEval and is based
on the DURel framework, which involves the collection of human judgments
to assess semantic change.

The corpus used for the dataset is derived from the People’s Daily, one of
the most popular newspapers in China, from the 1950s to the early 2000s. The
dataset contains texts from two time-specific subcorpora, representing the
pre- and post-reform and opening-up periods. The annotation word list con-
tains 20 words: 10 that have changed meaning over time and 10 stable words.
The words are chosen on the basis of frequency and changes reflected in the
corpus, as suggested by linguistic references. For each target word, 20 usage
pairs are randomly selected from the subcorpora. Annotation is carried out
by five native speakers of Mandarin Chinese with linguistic backgrounds.

Diachronic Word Usage Graphs [202] is the largest resource for graded
contextualised diachronic word meaning annotations in four languages: En-
glish, German, Swedish and Latin. This resource, based on 100,000 human
semantic proximity judgments, allows the identification of changes in word
usage graphs (WUGs) over time. The final dataset contains 168 diachronic
WUGs (DWUGs) for these languages. Examples of DWuGs for English, Ger-
man and Latin are shown in Figure 3.1 and Figure 3.2.

Data for annotation came from historical subcorpora specific to each lan-
guage. English data come from the Corpus of Historical American English
[4], German from the Deutsches Textarchiv and newspaper corpora [221,
240], Latin from the LatinISE corpus [150], and Swedish from the Kubhist cor-
pus. Approximately half of the target words for each language are selected
on the basis of changes described in etymological or historical dictionaries,
and the other half are control counterparts. The annotators are native speak-
ers and university students, some with a background in historical linguistics.

The annotation process involved constructing usage-usage graphs by
sampling 100 usages of each target word in two different time periods. An-
notators judged the semantic proximity between pairs of usages without
knowing their time period, allowing the construction of usage-usage graphs
through multiple rounds of annotation. The resource contains a significant
number of annotated usage pairs, with English, German and Swedish hav-
ing approximately 50% of usage pairs annotated by more than one annotator.
For Latin, each word is mostly annotated by a single annotator.
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FIGURE 3.1: Usage-usage graphs of English plane (left), Ger-
man ausspannen (middle) and Swedish ledning (right).

FIGURE 3.2: Usage-sense graphs of Latin pontifex (left), potes-
tas (middle) and sacramentum (right). Nodes in blue/red rep-

resent usages/senses respectively

3.2 Models of meaning

3.2.1 Temporal Aligned Language Models

In general, Distributional Semantic Models (DSMs) approaches produce
word vectors that are not comparable across time due to the stochastic na-
ture of low-dimensional reduction techniques or sampling techniques. To
overcome this issue a widely adopted approach is to align the spaces pro-
duced for each time period, based on the assumption that only few words
change their meaning across time. Words that turn out to be not aligned after
the alignment, changed their semantics.

Alignment models can be classified in post-alignment and jointly align-
ment models. Post-alignment models first train static word embeddings for
each time slice and then align them. Jointly Alignment models train word
embeddings and jointly align vectors across all time slices. Further, Jointly
Alignment models can be distinguished in Explicit alignment models and Im-
plicit alignment models. The objective function of explicit alignment models
involves constraints on word vectors. Typically those constraints require that
the distance of two-word vectors in two consecutive periods is the smallest
possible. In the implicit alignment, there is no need for explicit constraint since
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the alignment is automatically performed by sharing the same word context
vectors across all the time spans.

Lexical Semantic Change Models

Alignment Models Other Models

Jointly Alignment Models

Explict AlignmentImplicit Alignment

Post-Alignment Models

Orthogonal Procrustes,
Canonical Analysis, ..

Frequency, WSI, ..

TRI, TWEC, Temporal Referencing, .. DWE, DBE, ..

FIGURE 3.3: A classification of Lexical Semantic Change mod-
els.

Post-alignment Models

Orthogonal Procrustes (OP) [86] is a Post-alignment model, which aligns
word embeddings with a rotation matrix. Word embeddings are computed
using traditional approaches such as Singular Value Decomposition (SVD)
of Positive Point-wise Mutual Information (PPMI) matrices, FastText [99] or
Word2vec. The assumption of the OP method is that each word space has
axes similar to the axes of the other word spaces, and two-word spaces are
different due to a rotation of the axes. In this work, we use Skip-grams with
Negative Sampling (SGNS) [157] to compute word embeddings and align
them using Orthogonal Procrustes (OP-SGNS). In order to align SGNS word
emebddings we compute the orthogonal matrix

R = argminQTQ=I

∥∥QW t −W t+1
∥∥
F

where W t and W t+1 are two word spaces for time slices t and t + 1, respec-
tively. We normalize the length of the matrices W t and W t+1 and mean centre
them. Q is an orthogonal matrix that minimizes the Frobenius norm of the
difference between W t and W t+1. The aligned matrix is computed as

W align = RW t
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Jointly Alignment Models

Dynamic word embeddings (DWE) [236] is a Jointly Alignment Model. DWE
is based on the PPMI matrix factorization. In a unique optimization function,
DWE produces embeddings and tries to align explicitly them according to
the following equation:

min
U(t)

1

2

∥∥Y (t)− U(t)U(t)T
∥∥2

F
+

λ

2
∥U(t)∥2F +

τ

2

(
∥U(t− 1)− U(t)∥2F + ∥U(t)− U(t+ 1)∥2F

)
where the terms are, respectively, the factorization of the PPMI matrix Y (t),
a regularization term and the alignment constraint that keeps the word em-
beddings similar to the previous and the next word embeddings.

Temporal Word Embedding with a Compass (TWEC), Temporal Refer-
encing (TR) and Temporal Random Indexing (TRI) are instances of Jointly
Implicit Alignment Models.

TWEC [38] relies on the two Word2Vec models SGNS and CBOW. TWEC
freezes the target and the context embeddings, respectively in CBOW and
SGNS model across time, initializing them with the atemporal compass, i.e.
word embeddings trained on the whole corpus. TWEC learn temporal spe-
cific word embeddings, training only the context or the target embeddings,
respectively in CBOW and SGNS models across time.

TR [61] replace a subset of words in the dictionary (target words) with
time-specific tokens. Temporal referencing is not performed when the word
is considered a context word. Since TR is a generic framework, authors in
[61] applied TR to both low-dimensional embeddings learned with SGNS
and high-dimensional sparse PPMI vectors. In this work, we focus on the
implementation based on SGNS (TR-SGNS). TR requires to fix a set of target
words, this makes it impossible to compare words that are not in the target
words set.

Finally, we investigate Temporal Random Indexing (TRI) [12] that is able
to produce aligned word embeddings in a single step. Unlike previous ap-
proaches, TRI is a count-based method. TRI is based on Random Indexing
[196], where a word vector (word embedding) svTk

j for the word wj at time
Tk is the sum of random vectors ri assigned to the co-occurring words taking
into account only documents dl ∈ Tk. Co-occurring words are defined as the
set of m words that precede and follow the word wj . Random vectors are
vectors initialized randomly and shared across all time slices so that word
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spaces are comparable.
With the increasing use of contextualized word embeddings, numerous

approaches employing BERT-base models have been developed for LSC De-
tection [161, 123]. In TempoBERT [190], the authors exploit the concept of
Masked Language Modeling (MLM), where the goal is to train a language
model to predict a masked portion of text given the remaining part. In par-
ticular, they employ this technique to encode the concept of time into a BERT
model. This is done by concatenating a specific token representing time to
the text sequence. At inference time, TempoBERT can be used to predict the
year of a sentence, masking the time reference, or to predict a masked to-
ken of the sentence conditioned by the time reference. In the same line of
research, in Temporal Attention [191], the authors investigate the effect of
modifying the model instead of the input sentence like in TempoBERT. This
is done by extending the model’s attention mechanism to consider the time
when computing the weight of each word. The time dimension is encoded
using a different query embedding matrix for each timestamp.

3.2.2 Synchronic Supervised Models

With the growing availability of models capable of producing effective con-
textualised representations, a number of innovative approaches to Lexical
Semantic Change (LSC) Detection have been developed that make use of
information derived from other tasks. This transfer learning strategy has
yielded interesting results, contributing to the growing body of knowledge
in the field.

GlossReader, as described in [178], is a striking example of this strategy.
The core of GlossReader’s methodology lies in the use of the XLM-R model
[51], initially trained for Word Sense Disambiguation (WSD) on the English
SemCor dataset [159] with glosses from WordNet 3.0 [158]. The authors take
advantage of the model’s zero-shot cross-lingual capabilities, allowing it to
seamlessly transition to LSC Detection in the Russian language.

DeepMistake [7], another notable work into the field of LSC Detection,
takes a slightly different route. In this approach, the authors turn to the
Word-in-Context (WiC) task as an alternative to word sense disambiguation
(WSD). First, a cross-encoder is trained on the MCL-WiC training and devel-
opment dataset [144], using the XLM-R model as its foundational language
model. This is followed by fine-tuning on the RuSemShift dataset [187],
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which allows the model to focus on the specific nuances of LSC detection
in Russian.

Both systems participated in RuShiftEval and LSC Discovery. In both
cases they achieved top rankings. In particular, both models show an ef-
fectiveness in the LSC Graded Detection task that is far superior to all other
models, and in the LSC Discovery task they also achieve high results in the
gain and loss of meaning detection tasks. Both GlossReader and DeepMis-
take exemplify the essence of task and language transfer learning in the con-
text of LSC Detection. They represent innovative solutions that leverage pre-
trained models to tackle challenges beyond their original scope. The success
of these approaches not only expands our understanding of LSC Detection
but also underscores the versatility of modern natural language processing
techniques in addressing complex linguistic phenomena.

Giulianelli et al. [78] propose a novel approach to automatically generate
natural language definitions of contextualized word usages. This work intro-
duce a specialized Flan-T5 language model for generating these definitions.
By selecting the most prototypical definition in a usage cluster as the sense la-
bel, the aim is to make existing approaches to semantic change analysis more
interpretable and allow users like historical linguists, lexicographers, or so-
cial scientists to explore and intuitively explain the diachronic trajectories of
word meaning.

3.3 Applications

The interdisciplinary nature of computational modelling of semantic change
has the potential to reshape our understanding of language evolution across
diverse domains. From politics and law to science, literature, and societal
issues, the application of computational tools enriches our insights into the
dynamic nature of language and its role in shaping and reflecting societal
changes. As researchers continue to explore new avenues for semantic anal-
ysis, the field is poised to make significant contributions to various academic
disciplines and beyond.

One noteworthy exploration into the connections between political ide-
ologies and language comes from Marjanen et al. [143]. Their work delves
into the semantic shifts associated with "isms" such as liberalism, socialism,
and conservatism, shedding light on the progression of political language
throughout history. This research not only contributes to political discourse
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analysis but also showcases the applicability of computational models in un-
covering subtle nuances in language use.

Turning to scientific writing, Bizzoni et al. [27] investigate changes in sci-
entific discourse over time. By applying computational models, they uncover
shifts in terminology and semantic structures within scientific literature. This
research aids in understanding the dynamic nature of scientific language, an
essential aspect for scholars and researchers in various scientific disciplines.

Haider and Eger [85] direct their focus towards poetry studies. Com-
putational models enable them to analyze semantic changes in poetic lan-
guage, providing a unique perspective on how meanings and connotations
in literature evolve over time. This interdisciplinary approach showcases the
versatility of computational tools in uncovering patterns within creative and
expressive forms of communication.

Moving beyond the arts and humanities, computational modelling of se-
mantic change has found application in addressing societal issues. Wevers
[234] and Garg et al. [74] investigate the presence and evolution of gender
biases and ethnic stereotypes in textual data. These studies contribute to
a growing body of literature on social biases, demonstrating how compu-
tational tools can assist in identifying and understanding societal shifts re-
flected in language use.

The study conducted by Vylomova, Murphy, and Haslam [230] focuses on
harm-related concepts within psychology. By examining the semantic trans-
formations of terms like addiction, bullying, harassment, prejudice, and trauma,
the researchers aim to determine if these concepts have broadened in scope
over the past four decades. This research has implications for psychologists
and mental health professionals, offering insights into the changing land-
scape of psychological discourse.

In a broader societal context, Tripodi et al. [225] trace the evolution and
prevalence of antisemitic biases across various domains, including religion,
economics, and socio-politics. Their data reveals an alarming rise in anti-
semitism, particularly in France, from the mid-80s onward. This study un-
derscores the potential of computational modelling to unveil societal trends
and prejudices embedded in language, providing a valuable tool for re-
searchers and policymakers alike.

The Google Ngrams Dataset [79] is a dataset of n-grams extracted by
3.5 million books published between 1520 and 2008. Aiden and Michel [3]
exploit the huge quantity of information contained in the Google Ngrams
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Dataset to analyze the evolution of the language lexicon over time. In par-
ticular, the work offers interesting culturomics results, such as highlighting
the spread of the term influenza during historical pandemic periods. Kutu-
zov, Velldal, and Øvrelid [117] exploit diachronic word embeddings to track
wars and conflicts that took place from 1994 to 2010 all around the world.
Diachronic word embeddings are trained on the English Gigaword news cor-
pus [165] and used to predict conflict states: peace, war and stable. Laine and
Watson [124] analyze the linguistic sexism occurring in The Times newspaper
over five decades (1965-2005), relying on the classification of linguistic sex-
ism proposed in [109]. The authors hypothesize that occupational titles and
agents would be more resistant to change than other forms of sexism over
the decades. They confirm their hypothesis by exploring the frequencies of
masculine and feminine affixes, showing that they keep stable.
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Chapter 4

Temporal Aligned Language
Models

4.1 Analyzing Gaussian distribution of semantic

shifts in Lexical Semantic Change Models

In this work, we focus on the Lexical Semantic Change Detection, using the
data provided by both SemEval-2020 Task 1 Subtask 1 and DIACR-Ita. We
compare several approaches: Temporal Random Indexing (TRI) [12], Tempo-
ral Word Embeddings with a Compass (TWEC) [38], Orthogonal Procrustes
Alignment (OP) [86], Temporal Referencing (TR) [61] and Dynamic Word
Embeddings (DWE) [236]. We evaluate all the models against both DIACR-
Ita and SemEval-2020 Task 1 since some of these models, currently, have been
evaluated in only one of the two tasks.

All the models evaluated in this work are graded, which means that they
output a degree of semantic change. The degree of semantic change is typi-
cally expressed as the cosine between word vectors (embeddings) computed
at different time, assuming that the lowest value of cosine similarity corre-
sponds to the highest degree of change. A common strategy to map the de-
gree of change to discrete stable/change label is:

• Compute the degree of change δ (cosine similarities) for each target
word in the target set T , Σ = {δ|w ∈ T}

• Compute the Gaussian N (µ, σ) parameters of Σ

• Use µ, σ to assign a label to the target words (e.g. target words with
degree of change less than µ− σ are labeled as change)

This work aims to get an overview of how thresholds based on the Gaus-
sian parameters (e.g. µ − σ, µ, µ + σ) work over different Lexical Semantic
Change models and languages.



38 Chapter 4. Temporal Aligned Language Models

DIACR-Ita and SemEval-2020 Task 1 Subtask 1 require to assign a label
(stable or changed) to each word in a predefined set. Most Lexical Seman-
tic Change models produce graded scores that need to be labeled in one
of the two classes. Choose a threshold is a crucial phase in binary classi-
fication since we need a strategy that should be independent by different
Lexical Semantic Change models and languages. Systems that participated
in SemEval-2020 Task 1 and DIACR-Ita employed several strategies to label
graded scores (e.g. cosine similarities) obtained by Lexical Semantic Change
Models.

The simplest approach is based on the idea that stable and changed words
are equally distributed. In this case, it is possible to sort the words by the co-
sine similarity (in ascending order) and the first portion of the set is labelled
as change. However, this is a weak approach since the equal distribution
assumption does not fit the real-world.

Another common solution is to use an empirically chosen threshold, that,
however, could be model-dependent. For instance, models such as DWE
or TR produce smoothness changes than OP applied to vectors computed
with Skip-grams with Negative Sampling [157]. In [23], authors use TWEC
to compute word vectors and the move measure that is a linear combination
of the cosine similarity and the similarity of local neighbourhoods. The au-
thors empirically set the move threshold to 0.7. The system ranked 3rd in the
DIACR-Ita task.

More advanced solutions involve unsupervised approaches to compute
the threshold. In [43], target words are clustered using Gaussian Mixture
Clustering [96] to form two clusters: the cluster of change targets and the
cluster of stable targets. TRI with Gaussian Mixture Clustering ranked 1st in
SemEval-2020 Task 1 Subtask 1 for the Swedish language. In [243] authors
hypothesize that the target words cosine distances follow a Gamma distribu-
tion. Target words at the peak are classified as stable, while those at the tail
are classified as change.

In [175] and [174] SGNS vectors are aligned by exploiting Canonical
Analysis [88] and Orthogonal Procrustes [86] as Post-alignment models.
The authors exploit two different thresholds over the cosine distances: the
binary-threshold and the global threshold. The former is computed aver-
aging the target cosine distances, while the latter is computed averaging
over the binary-threshold computed for each language. The system based
on the binary-threshold ranked 1st in both SemEval-2020 Task 1 Subtask 1
and DIACR-Ita. The experiments in [101], following the same approach in
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DIACR-Ita, confirm the results obtained by [174].
In general, we can distinguish three different approaches used by sys-

tems proposed in SemEval-2020 Task 1 Subtask 1 and DIACR-Ita to compute
thresholds by exploiting the change degree Gaussian distribution:

• Approach 1: Compute the Gaussian parameters over the target set.

• Approach 2: Compute the Gaussian parameters over all the dictionary.

• Approach 3: Compute the Gaussian parameters over the targets and
get final thresholds averaging across different languages.

4.1.1 Data

In this work, we consider data coming from both SemEval and EVALITA.
SemEval-2020 Task 1 [205] comprises two tasks and covers corpora writ-

ten in four different languages, namely German [240, 221], English [4], Latin
[150], and Swedish [31]. Corpus statistics are reported in Table 4.1. Given
two corpora C1 and C2 for two periods t1 and t2, Subtask 1 requires partic-
ipants to classify a set of target words in two categories: words that have
lost or gained senses from t1 to t2 and words that did not, while Subtask 2
requires participants to rank the target words according to their degree of
lexical semantic change between the two periods.

DIACR-Ita focuses on the Unsupervised Lexical Semantic Change De-
tection for the Italian language. DIACR-Ita exploits the “L’Unità” corpus
[18] that consist of two corpora C1 and C2. C1 covers the period 1945-1970,
while C2 covers the period 1990-2014. An important aspect that distinguishes
DIACR-Ita from SemEval is the annotation method. While, SemEval uses the
DUREL framework for the annotation, DIACR-Ita relies on a sense-aware
method guided by annotation retrieved by the Sabatini Coletti Dictionary
[13]. The method consists of a selection and filtering of candidate words fol-
lowed by manual annotation. The gold standard is obtained by checking that
attested semantic change in the Sabatini Coletti dictionary is present in the
training corpus.

4.1.2 Experimental setting

In order to estimates results, avoiding errors due to stochastic parameters ini-
tialization, we bootstrap ten runs for each model and language, respectively,
averaging the results across the runs. We set the hyper-parameters according



40 Chapter 4. Temporal Aligned Language Models

Language Corpus Period #Tokens
English CCOHA 1810-1860 6.5M
English CCOHA 1960-2010 6.7M
German DTA 1800-1899 70.2M
German BZ+ND 1946-1990 72.3M
Swedish Kubhist 1790-1830 71.0M
Swedish Kubhist 1990-2014 110.0M

Latin LatinISE -200-0 1.7M
Latin LatinISE 0-2000 9.4M

TABLE 4.1: SemEval-2020 Task 1 statistics.

Corpus Period #Tokens
L’Unità 1948-1970 52.2M
L’Unità 1990-2014 196.5M

TABLE 4.2: DIACR-Ita statistics.

to the findings of works proposed for DIACR-Ita and SemEval. For all the
models, we set the number of iterations over the data to 5. In particular, for
TWEC we set the number of static iterations to 3 and the number of dynamic
iterations to 2.

We use a context-window of 5 for all the models. We set the number of
negatives to 5 in all the models that use negative sampling. We set the vector
dimension (dim) to 300 in all the models, except that for DWE. In DWE, we
set the vector dimension dim to 100. We use a down-sampling (sampling)
of 0.001 for all the models: TRI, TWEC, OP-SGNS and TR-SGNS. Table 4.3,
reports models and hyper-parameters values. Where not specified, we adopt
default values used by the authors of the models reported in SemEval or
DIACR-Ita reports.

In particular, in DWE we specify the number of the alignment weight τ ,
the regularization weights λ and γ as reported in Table 4.3. In TRI, we set the
number of seeds to the default value 10.

DWE TRI TWEC OP-SGNS TR-SGNS
Param. Value Param. Value Param. Value Param. Value Param. Value
dim 100 dim 300 dim 300 dim 300 dim 300
window 5 window 5 window 5 window 5 window 5
iter 5 iter 5 iter 5 iter 5 iter 5
λ 10 sampling 0.001 sampling 0.001 sampling 0.001 sampling 0.001
γ 100 seeds 10 negatives 5 negatives 5 negatives 5
τ 50

TABLE 4.3: Models hyper-parameters.
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English German Swedish Latin Italian Model Avg.
Model

TRI .51±.18 .48±.16 .49±.17 .63±.18 .55±.24 .53±.18
DWE .86±.07 .56±.17 .66±.13 .80±.08 .56±.17 .69±.13
TWEC .65±.10 .54±.12 .56±.12 .61±.10 .59±.15 .59±.12
OP-SGNS .55±.14 .41±.16 .45±.14 .50±.13 .43±.21 .47±.16
TR-SGNS .48±.10 .42±.11 .42±.11 .41±.08 .50±.15 .45±.11
Language Avg. .61±.12 .48±.15 .52±.13 .59±.12 .53±.18

TABLE 4.4: Target words cosine similarities mean and standard
deviation across different models and languages, computed on

the target set.

English German Swedish Latin Italian Model Avg.
Model

TRI .24±.22 .34±.23 .30±.20 .25±.22 .46±.26 .32±.22
DWE .72±.12 .51±.16 .47±.15 .69±.11 .50±.17 .58±.14
TWEC .69±.09 .56±.10 .54±.11 .64±.10 .63±.11 .61±.10
OP-SGNS .51±.16 .40±.15 .36±.17 .44±.15 .43±.17 .43±.16
Language Avg. .54±.15 .45±.16 .42±.16 .51±.14 .50±.18

TABLE 4.5: Target words cosine similarities mean and standard
deviation across different models and languages, computed on

the overall dictionary.

4.1.3 Results

In SemEval-2020 Task 1, systems are evaluated against three baselines. The
Frequency Distance Baseline is based on the absolute difference of the nor-
malized frequency in the two corpora as a measure of change. The Count
Baseline implements the model described in [201], while the Majority Base-
line always predicts the majority class. DIACR-Ita, as SemEval, provides
the frequency distance baseline. Moreover, DIACR-Ita proposes the Colloca-
tions baseline. Collocations baseline, introduced in [13], computes the time-
dependent representation of targets words using Bag-of-Collocations related
to the two different periods. In this work, we use only the frequency baseline.
In both SemEval and DIACR-Ita systems are evaluated using the Accuracy.

Tables 4.4 and 4.5 report, respectively, the statistics about cosine similarity
over the target set and the overall dictionary1. The language average cosine
computed on the target set is greater than the language average cosine com-
puted on the overall dictionary, even when the target set consists of a greater

1TR-SGNS temporal-aware representations are available only for target words, for this
reason it is not possible to compute the cosine similarities for the overall dictionary.
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number of change words, as in the Latin language. It appears that the lan-
guage average cosine computed on the target set is not correlated with the
class balance reported in Table 4.8.

We test three Gaussian thresholds: µ − σ, µ, µ + σ computed over the
target set for each language and for each model, as reported in Table 4.4. We
plot the Accuracy obtained by each model, averaging over all the languages
in Figure 4.1. The µ− σ threshold outperforms in every case the µ and µ+ σ

thresholds. We report results obtained in SemEval in Table 4.6, while results
obtained in DIACR-Ita in Table 4.7 using the µ−σ threshold. Moreover, to test
the efficacy of the Gaussian threshold, we compute the optimal threshold,
maximising the accuracy, of λ for each model and language. In particular, we
test different values of λ in order to find the optimal value that maximize the
accuracy.

In DIACR-Ita task, all models outperform the baseline when µ−σ thresh-
old is used. In SemEval, for the German and Swedish languages, the baseline
obtains an accuracy very close to the considered models. This fact is more ev-
ident if we consider the optimal threshold. The accuracy obtained by any of
the considered models with the Gaussian threshold remains above the accu-
racy obtained by the Baseline with the optimal threshold. In SemEval, the
baseline with the optimal threshold outperforms all the models in combina-
tion with the Gaussian threshold in both Swedish and Latin languages.

An important consideration is that the target set of the DIACR-Ita task
is smaller than about 50% of the English, German, Swedish and Latin target
sets. On the other hand, the class balance of DIACR-Ita is very close to the
class balance of German and Swedish languages in SemEval.

The class balance, reported in Table 4.8, may have affected the effective-
ness of the used threshold. The µ− σ threshold never fits the optimal thresh-
old. In particular, the accuracy of all the models using the µ − σ threshold
decreases dramatically for the Latin language. We can hypothesize that the
µ − σ threshold is affected by the unbalancing of the target set for the Latin
language. The Latin language target set consists of only 35% of stable words.
Some considerations for the Latin language:

• The target set for the Latin language consists of a greater number of
change words rather than stable words, but most of the models rely on
the assumption that only few words change their meaning, while the
majority remain stable.
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FIGURE 4.1: Models accuracy with different Gaussian thresh-
olds: µ − σ, µ, µ + σ computed over the target set for each
language and for each model. Accuracy is averaged across En-

glish, German, Swedish, Latin and Italian language.

• The Latin dataset is challenging, since the first corpus refers to the an-
cient Latin, while the second one refers to the Latin of the Catholic
Church.

These peculiarities make it challenging to compare the results obtained in the
Latin language against the other languages.

English German Swedish Latin

Model µ− σ λ µ− σ λ µ− σ λ µ− σ λ

TRI .65±.03 .67±.02 .65±.02 .70±.04 .80±.02 .83±.02 .48±.01 .66±.01
DWE .66±.03 .69±.01 .69±.02 .73±.03 .74±.02 .81±.02 .40±.02 .67±.01
TWEC .65±.02 .67±.01 .74±.02 .78±.02 .74±.01 .77±.00 .49±.03 .70±.01
OP-SGNS .64±.02 .66±.02 .75±.02 .80±.01 .75±.03 .79±.02 .44±.02 .69±.01
TR-SGNS .71±.01 .73±.02 .80±.01 .87±.02 .73±.02 .79±.02 .45±.02 .70±.02

Baseline .62±.00 .68±.00 .65±.00 .65±.00 .74±.00 .81±.00 .35±.00 .62±.00

TABLE 4.6: Accuracy obtained in SemEval-2020 Task 1 Subtask
1.

4.2 Gaussian Mixtures Cross-temporal similarity

clustering

SemEval 2020 Task 1 [205] proposes a common evaluation framework that
comprises two tasks and covers corpora written in four different languages,
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Italian

Model µ− σ λ

TRI .81±.04 .83±.02
DWE .76±.04 .84±.02
TWEC .73±.02 .88±.02
OP-SGNS .91±.04 .96±.02
TR-SGNS .83±.00 .95±.02

Baseline .67±.00 .67±.00

TABLE 4.7: Accuracy obtained in DIACR-Ita.

Language Stable Changed
English 43% 57%
German 67% 33%
Swedish 74% 26%

Latin 35% 65%
Italian 67% 33%

TABLE 4.8: Classes balance for each language.

namely German [240, 221], English [4], Latin [150], and Swedish [31]. Given
two corpora C1 and C2 for two periods t1 and t2, Subtask 1 requires partic-
ipants to classify a set of target words in two categories: words that have
lost or gained senses from t1 to t2 and words that did not, while Subtask 2
requires participants to rank the target words according to their degree of
lexical semantic change between the two periods. We tackle the problem of
automatically detecting lexical semantic changes with approaches that rely
on temporal word embeddings. In this work, we focus on dynamic word
embeddings by exploring methods based on both explicit, such as Dynamic
Word2Vec [236], and implicit alignment, namely Temporal Random Indexing
[12] and Temporal Referencing [61]. We analyse the use of different similar-
ity measures to determine the extent of a word semantic change and com-
pare the cosine similarity with Pearson Correlation and the neighborhood
similarity [209]. While these similarity measures can be directly employed
to generate a ranked list of words for Subtask 2, their adoption in Subtask
1 requires further manipulation. We introduce a new method to classify
changing vs. stable words by clustering the target similarity distributions
via Gaussian Mixture Models. We describe the embedding models and the
clustering algorithm in Section 2, while Section 3 provides details about the
hyper-parameter selection. Section 4 reports the results of the task evaluation
followed by some concluding remarks in Section 5.
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4.2.1 System description

We model the problem of automatic detection of semantic change by exploit-
ing temporal word embeddings Ei : w → Rd that project each word w in
the vocabulary V into a d-dimensional semantic space. Given two different
time periods t1 and t2, we create two embeddings E1 and E2. We investigate
several models to compute temporal word embeddings:

Dynamic Word2Vec (DW2V) [236] simultaneously learns time-aware em-
beddings by aligning and reducing the dimensionality of time-binned
Positive Point-wise Mutual Information matrices.

Temporal Random Indexing (TRI) [12] implicitly aligns co-occurrence ma-
trices by using the same random projection for all the temporal bins.

Collocations extracts for each word and each time period the set of relevant
collocations through the Dice score. As similarity function, we measure
the cosine similarity between the sets of collocations belonging to the
two different time periods. More details are reported in Basile, Semer-
aro, and Caputo [13].

Temporal Referencing (TR) [61] used only in the post-evaluation, it con-
sists in a modified version of Word2Vec Skipgram that adds a temporal
referencing to target vectors, keeping context vectors unchanged.

A similarity measure between vectors in the two temporal spaces is
adopted to compute the extent of the semantic drift of the target words. We
explored several similarity measures:

Cosine similarity (CS) is the cosine of the angle between two vectors.

Pearson correlation (PC) measures the linear correlation between two vari-
ables, in case of centred vectors (with zero means) is equivalent to the
cosine similarity.

Neighborhood similarity (NS) computes two k-neighbour sets
nbrsk(E1(w)) and nbrsk(E2(w)) and the union set U = nbrsk(E1(w)) ∪
nbrsk(E2(w)). Two second-order vectors, one for each word represen-
tation uj , are created. The components of ui are the cosine similarity
between the vector vj

2 and the i-th element of U : uji = cos(vj,U(i)).
The Neighborhood similarity is the cosine similarity between the
second-order vectors. In all the experiments we set k = 25.

2Where vj is the vector representation for the word generated by Ej and j is the time
period.
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Subtask 2

In Subtask 2, we use one of the three similarity measures (CS, PC, NS) to
compute the set of target similarities S = {sim(E1(w), E2(w)) | w ∈ T}.
Then, we rank the target words according to the distance, computed as: 1− |
sim(E1(w), E2(w)) |.

Subtask 1: Gaussian Mixture Clustering

Subtask 1 requires a further step: given S, the set of target similarities, we
need to predict the target labels. The aim is to assign either of the two classes,
0 (stable) or 1 (change), to each target word of a given language. Once we
compute the set of target similarities S, we want to find a way to assign
the corresponding label. We assume that low similarities suggest changing
words and high similarities indicate stable words.

Gaussian Mixture Models (GMMs) allow us to build probabilistic models
for representing the Gaussian distribution of stable and changing targets. We
use GMMs3 to model the density of the distributions of the similarities of
targets as a weighted sum of two Gaussian densities [96]:

f(S) =
M∑

m=0

πmϕ(S|µm,Σm) (4.1)

where M is the number of mixture components, ϕ(S|µm,Σm) is the Gaussian
density with mean vector µm and covariance matrix Σm, and πm is the prior
probability for the m-th component. Additional constraints can be applied to
the covariance matrix in Eq. 4.1. In our experiments, we allow each compo-
nent to have its own covariance matrix.

For our purpose, we speculate that the distribution of target similarities is
a mixture of two densities, i.e. representing the stable and changing words.
Consequently, we fix the number of the mixture components in the GMMs to
two. We initially randomly assign a label (stable/changing) to each density
distribution. Let µ0 and µ1 be the means of the two Gaussians associated
with the “stable” and “changing” labels respectively. If µ0 < µ1 (i.e. the
similarity mean of the distribution labelled as “stable” is lower than the mean
of distribution labelled as “changing”), we invert the labels. Alg. 1 can be
used to properly label each word of the target vocabulary.

3https://scikit-learn.org/stable/modules/generated/sklearn.mixtur
e.GaussianMixture.html

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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input : S
output: labels
N (µ0, σ0),N (µ1, σ1), labels←− GaussianMixtures(S);
if µ0 < µ1 then

labels←− 1− labels;
end

Algorithm 1: Assign labels

In order to set the best parameters for each language and model, we rely
on the GMMs log likelihood, which is generally used for estimating the clus-
ters quality:

ℓ(θ | S) = log

M∑
m=0

πmϕ(S | µm,Σm) (4.2)

where θ are the parameters of the GMM. For each language, we select
the best model configuration to submit at the challenge using the GMMs
log likelihood ℓ(θ | S). This means that hyper-parameters across different
languages are tuned using GMMs log likelihood. We improperly use this
approach for choosing parameters across different models (different sets of
similarities S), as we do not have validation set for tuning the parameters.
We will investigate this limitation as future work. The selected models and
hyper-parameters are reported in Tab. 4.9. In particular, we use cosine sim-
ilarity, Pearson correlation and Neighborhood similarity for computing the
targets similarities in OverallCS , OverallPC and OverallNS runs, respectively.
In DW2V and TRI runs we use always cosine similarity.

4.2.2 Experimental Setup

In all the runs, we do not pre-process data and we use a context window
size of 5 while analyzing sentences. The TR model4 has been adopted into
its original implementation5, as the TRI6 approach and DW2V 7 one. For
runs involving TRI , we experimented with a varying vector size from 200

to 1, 000. Moreover, we investigated (1) the initialization of the count ma-
trix at time j with the matrix at time j − 1, (2) the contribution of positive-
only projections, and (3) the application of PPMI weights, as explained in
QasemiZadeh and Kallmeyer [177]. For DW2V , we use the parameter set-
ting proposed in Yao et al. [236]. We set λ = 10, τ = 50, γ = 100, ρ = 50 and

4We add this model during the post-evaluation.
5https://github.com/Garrafao/TemporalReferencing
6https://github.com/pippokill/tri
7https://github.com/yifan0sun/DynamicWord2Vec

https://github.com/Garrafao/TemporalReferencing
https://github.com/pippokill/tri
https://github.com/yifan0sun/DynamicWord2Vec
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experimented with a number of iterations from one to five. As vocabulary,
we kept the top 50,000 most frequent tokens for both TRI and DW2V . In the
TR runs, we set the vector size to 100, and we experimented eight iterations
for English and Latin, and four for German and Swedish. ytick pos=left, All
the other parameters used for configuring the models are reported in Tab.
4.9.

Run Configuration English German Latin Swedish

OverallCS

Model DW2V Collocation DW2V DW2V
Parameters it=3 - it=3 it=4

OverallPC

Model DW2V DW2V DW2V DW2V
Parameters it=3 it=4 it=3 it=4

OverallNS

Model DW2V DW2V DW2V DW2V
Parameters it=3 it=1 it=3 it=4

TRI Parameters
k= 400 k=1000 k=1000 k=1000

pw=False pw=True pw=True pw=True

DW2V Parameters it=3 it=4 it=3 it=4

TABLE 4.9: Hyper-parameters and models selected for each
run. it is the number of iterations, k is the embedding size, pw

the use of PPMI weights

4.2.3 Results

SemEval 2020 Task 1 provide three baselines, namely Freq. Baseline, which
uses the absolute difference of the normalized frequency in the two corpora
as a measure of change; Count Baseline, which implements the model de-
scribed in [201]; and Maj. Baseline that always predicts the majority class.
Tab. 4.10 reports the main results obtained by the different models. It shows
the results obtained from the official submissions at the challenge and the
results obtained by the TR approach performed during the post-evaluation
phase. The results obtained for Subtask 1 are reported using the accuracy
metric, while for Subtask 2, the Spearman’s rank-order correlation coeffi-
cients are used.

Considering the results of the evaluation phase, the models show incon-
sistent behaviors. TRI showed the best performance when considering “all
the languages” for both Subtasks, although in Subtask 1 it is not able to over-
come Count Baseline and Maj. Baseline. Focusing on Subtask 1, if we consider
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each language in isolation, we see that DW2V gives the best results for En-
glish8 while OverallPC is our best system for German language, although
it is not able to overcome Count Baseline. Collocation is the best system for
Latin (although outperformed by Freq. Baseline) while TRI is our best system
for Sweden language. In Subtask 2, the best English score was reported by
OverallNS . OverallCS (Collocation) performed the best in German language.
For Latin and Sweden, TRI provided the best results, and interestingly, it is
one of the few systems that did not generate a negative correlation, although
outperformed by CountBaseline in Latin language.

At the end of the challenge, when the labelled test set was released, we
performed more experiments reported in the post-evaluation row. In this
phase, we run an additional system, TR, which outperformed all the pre-
vious reported approaches, including all baselines. The only exception is for
Latin, in which for Subtask 1 Freq. Baseline achieves 0.650 accuracy in com-
parison to 0.525 of TR. Comparing TR and TRI , which are both based on
implicit alignment, the former is a prediction-based model while the latter is
a count-based one. Moreover, TR creates a temporal word embedding only
for the target words rather than for the whole vocabulary. Consequently, this
results in better word embeddings for all the words in the vocabulary that
do not have a temporal reference, because they are represented by using all
occurrences in C1 and C2. We suppose that these differences allow TR to
achieve better results than the other models.

Tab 4.11 reports the best results for each language among all participants
to Task 1. UWB obtains the best result for German language, tied with Life-
Language and RPI-Trust, and the best average result over all languages.
Our official submission TRI gives the best result in the Swedish language,
whereas Jiaxin & Jian results first for Latin and NLPCR for English language.
In Subtask 2, NLPCR and UWB obtain the best results for English and Ger-
man languages respectively, confirming results obtained in Subtask 1. Con-
cerning the Latin language, also Jiaxin & Jian confirm results obtained in
Subtask 1, outperformed only by RPI-Trust, while in Swedish UWB obtain
the best result. In general, each system achieved the best performance in one
language while performing differently on the remaining others.

During the post-evaluation, we decided to investigate also the role of
GMMs for class labeling (Sec. 4.2.1). We compared GMMs with semi-manual
thresholds µS , µS − σS , µS + σS and Winsorizing [110] computing µS and σS

8Please, note that for EN, LA and SW OverallCS and DW2V coincide
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Subtask 1 Subtask 2

System All
Lang. EN DE LA SV All

Lang. EN DE LA SV

Freq.Baseline 0.439 0.432 0.417 0.650 0.258 -0.083 -0.217 0.014 0.020 -0.150
CountBaseline 0.613 0.595 0.688 0.525 0.645 0.144 0.022 0.216 0.359 -0.022
Maj.Baseline 0.576 0.568 0.646 0.350 0.742 NaN NaN NaN NaN NaN

OverallCS 0.509 0.622 0.500 0.400 0.516 0.111 0.252 0.415 -0.183 0.041
OverallPC 0.533 0.595 0.646 0.375 0.516 0.056 0.272 0.168 -0.135 -0.080
OverallNS 0.508 0.568 0.542 0.375 0.548 0.035 0.298 -0.059 -0.179 0.078
Collocation 0.513 0.486 0.500 0.550 0.516 0.273 0.144 0.415 0.194 0.340
DW2V 0.541 0.622 0.625 0.400 0.516 0.098 0.252 0.366 -0.183 -0.041
TRI∗ 0.554 0.486 0.479 0.475 0.774 0.296 0.211 0.337 0.253 0.385

TR
(post-eval.) 0.704 0.703 0.812 0.525 0.774 0.496 0.304 0.722 0.395 0.562

TABLE 4.10: Results obtained by our models during the offi-
cial competition and during the post-evaluation phase. For the
Subtask 1 the results represent the accuracy score. Spearman’s
rank-order correlation coefficients are used for the Subtask 2.
TRI∗ is the official submission in the evaluation phase since it

obtained the best score in the Subtask1.

on data provided for Subtask 1, where µS and σS are the mean and the stan-
dard deviation computed on the similarity set S. Figure 4.2 reports the dif-
ferent accuracy scores obtained by the five methods for the TRI , Collocation,
DW2V , TR approaches. The scores for the GMMs strategy are close to those
obtained by µS for TRI and Collocation. While GMMs outperforms µS + σS

in every run, µS − σS seems to work better than GMMs except that in TR.
Winsorizing works better than GMMs in TRI and Collocation. GMMs out-
performs Winsorizing in DW2V and TR. These results are not clear enough
to advocate for a specific threshold. Consequently, further analysis will be
part of future work in order to understand what is the better threshold that

Subtask 1 Subtask 2

System All
Lang. EN DE LA SV All

Lang. EN DE LA SV

TRI .55 .49 .48 .47 .77 .30 .21 .34 .25 .38
NLPCR .58 .73 .54 .45 .61 .29 .44 .45 .15 .11
UWB .69 .62 .75 .70 .68 .48 .37 .70 .25 .60
Jiaxin & Jinan .66 .65 .73 .70 .58 .52 .32 .72 .44 .59
Life-Language .68 .70 .75 .55 .74 .22 .30 .21 -.02 .39
RPI-Trust .66 .65 .75 .50 .74 .43 .23 .52 .46 .50

TABLE 4.11: Best results obtained in Subtask 1 for each lan-
guage: TRI is compared with results submitted by all partici-

pants to the SemEval-2020 Task 1.
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could be included in the GMMs process.
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FIGURE 4.2: Accuracy scores in Subtask 1 using different class
labeling strategies: GMMs, µS , µS −σS , µS +σS and Winsoriz-

ing using mean and standard deviation.

4.3 A Comparative Study of Approaches for the

Diachronic Analysis of the Italian Language

In this work, we compare state-of-the-art approaches in computational his-
torical linguistics, and we present the results of an in-depth analysis con-
ducted using an Italian diachronic corpus. Specifically, several approaches
based on both static embeddings and dynamic ones are implemented and
evaluated by using the Kronos-It dataset. We train all word embeddings on
the Italian Google n-gram corpus. The main result of the evaluation is that
all approaches fail to significantly reduce the number of false-positive change
points, which confirms that lexical semantic change is still a challenging task.

Previous works about the Italian Google Ngram corpus and Kronos-it are
described in [17, 13], but they are limited to the Temporal Random Indexing
model [12] and simple baselines based on word frequencies and collocations
ignoring recent approaches based on word embeddings.
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4.3.1 Methodology

Figure 4.3 shows the pipeline used for the evaluation, it consists of five mod-
ules: corpus pre-processing, computation of bins, bins alignment, construc-
tion of time-series and change point detection. The framework is written in
Python, we adopt Procrustes9, DBE10, DWE11 and TRI12 using their original
implementation.

FIGURE 4.3: The evaluation pipeline.

Corpus pre-processing

The corpus pre-processing module receives as input a corpus annotated with
the time label of each document. The first operation is the corpus splitting
into temporal slices. During the splitting, the dictionary is computing by
keeping track of each new token encountered and its occurrence. The final
dictionary is built with all tokens present in each time slice and selecting the
first n tokens sorted by the number of occurrences. In our evaluation, we
consider n = 50, 000.

Bins building

The second module takes as input tokenized documents for each time slice
and generates for each approach preliminary information useful for the next

9https://github.com/williamleif/histwords
10https://github.com/mariru/dynamic_bernoulli_embeddings
11https://github.com/yifan0sun/DynamicWord2Vec
12https://github.com/pippokill/tri

https://github.com/williamleif/histwords
https://github.com/mariru/dynamic_bernoulli_embeddings
https://github.com/yifan0sun/DynamicWord2Vec
https://github.com/pippokill/tri
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steps. It has an execution mode for each approach namely Word2Vec, PPMI,
Static Bernoulli and Temporal Random Indexing. Word2Vec mode trains
a Word2Vec model on each sub-corpus using Gensim13, an open-source li-
brary for unsupervised topic modelling and natural language processing.
The PPMI mode constructs a PPMI matrix for each time slice, which will
then be used to create Dynamic Word Embedding. The Bernoulli mode
builds static Bernoulli embedding for each time slice that will later be used to
construct Dynamic Bernoulli embeddings. The Temporal Random Indexing
mode saves the occurrences of words and contexts that we will later be used
to create word embeddings.

Alignment

The aim of the alignment module is the alignment of the bins produced as
output in the previous module, and it is composed of several sub-modules:
Procrustes Aligner, Bernoulli Aligner, Dynamic word embeddings construc-
tion and the TRI sub-module. The Bernoulli Aligner constructs Dynamic
Bernoulli Embeddings starting from the static Bernoulli output. Procrustes
Aligner is the sub-module that takes each Word2Vec model and applies Pro-
crustes to each time slice. The Dynamic Word Embeddings sub-module takes
the PPMI matrices previously created for building the Dynamic Word em-
beddings model. The TRI sub-module produces word vectors for each time
slice by relying on the co-occurrences information built in the previous step.

Time-series and change point detection

We compute time-series by exploiting the word embeddings created for each
time slice. A time-series for each word is built, this result in a matrix W V xT

where V is the dictionary size and T is the number of time slices.
We explore two approaches for the computation of the time-series,

namely point-wise and cumulative. In the point-wise approach, the element
i, j of W V xT represent the cosine similarity

Wi,j = cos(vj−1
wi

, vjwi
)

13https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/
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where wi is the i-th word in the dictionary and j is the j-th time slice. While,
in the cumulative approach, the element i, j of W is

Wi,j = cos(

∑j
k=1 v

k−1
wi

j
, vjwi

)

In order to detect change points, we use the algorithm proposed in [220].
According to this model, we define a mean shift of a general time-series Wi

pivoted at time period j as:

K(Wi) =
1

l − j

l∑
k=j+1

Wi,k −
1

j

j∑
k=1

Wi,k (4.3)

To understand if a mean shift is statistically significant at time j we use a
bootstrapping [62] approach under the null hypothesis. The null hypothesis
states there is no change in the mean. We sample B bootstrap examples by
permuting Wi,j . For each bootstrap sample P, K(P ) is calculated to provide
its corresponding bootstrap statistic and statistical significance (p-value) of
observing the mean shift at time j compared to the null distribution. Finally,
we estimate the change point by considering the time point j with the mini-
mum p-value score.

Change points together with the year, the p-value and the word are stored
in a file used for the evaluation.

4.3.2 Evaluation

Data

For the training, we use the Google Ngram, a dataset of ngrams extracted by
305,763 Google Books. Google Ngram covers the period from 1500 to 2012.
OCR errors can occur more in older historical documents, then we extract a
sub-corpus concerning the period 1900-2010. We split Google Ngram corpus
into ten slices with a range of ten years, starting from 1900 to 2010. We chose
a time span of ten years for reducing the computational complexity since se-
mantic changes are not frequent and generally require a large time span to be
observed. Since the full text is not available in the Google Ngram, we use the
method described in [77] for extracting co-occurrences between words. As
gold standard, we use Kronos-it [13], a dataset for the Italian lexical change
detection task. Kronos-it provides for each lemma a set of years indicating
the semantic change for that lemma. Kronos-it is extracted by the Sabatini
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DWE TRI DBE Procrustes
Parameter Value Parameter Value Parameter Value Parameter Value
dimension 300 dimension 300 dimension 300 dimension 300
window 4 window 4 window 4 window 4
iters 5 down-sampling 0.001 negatives 2 min-count 1
λ 10 seeds 10 minibatch 1000 negatives 20
γ 100 n epochs 4 sample 1e-5
τ 50 iter 4

TABLE 4.12: Models hyper-parameters.

Coletti, an Italian dictionary that contains for some word meanings the year
of the first appearance. The Kronos-it dataset contains 13,818 lemmas and
13,932 change points. Lemmas reported in Kronos-it have, on average, one
change point.

Hyper-parameters

We use the same hyper-parameters values shared by two or more models. We
use the same values for the context-window and the dimension of the embed-
dings. Table 4.12 reports training strategies and hyper-parameters values.
We adopt default values used by the authors of the models.

In particular, in DWE we specify the number of iterations over the data,
the alignment weight τ , the regularization weights λ and γ. In TRI, we set
the down sampling factor, and the number of seeds. In DBE, we set the number
of negative samples, the minibatch size and the number of epochs. In Procrustes,
we set the minimum number of occurrences a token must have to appear in
the dictionary min-count, the number of negative samples, the downsampling
parameter sample and the number of iterations over the data.

Metrics

We compute the performance of each approach by using Precision, Recall
and F-measure. In the evaluation, a true positive is a change point for a word
reported in the gold standard that belongs to the range of the ten years pre-
dicted by the system for that word. Change points provided by the systems
are compared to the change points reported in the gold standard. The false
negatives (FN) are the number of change points in the gold standard minus
the true positives. The false positives (FP) are the number of change points
provided by the system minus the true positives.
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FIGURE 4.4: Example of semantic shifts detected. Red points
marks change points in the gold standard. Change points de-

tected in the time-series are shown.
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Results

Table 4.13 reports Precision (P), Recall (R) and F-measure (F) for each system.
We can observe that generally, we obtain a low F-measure. This is due to
the large numbers of change points detected by each system (false positive).
We can observe that the best approach is DWE point-wise. However, the re-
sults of DWE point-wise are close to those obtained by Procrustes point-wise
and TRI cumulative. A remarkable aspect is the worse performance of DBE
respect those of TRI and DWE, the entries of DBE time-series are very close
to 1, this highlights a heavy alignment. This is maybe due to the choice of
hyper-parameters used to train the DBE. We use, as mentioned above, the
default hyper-parameters and the type of datasets used by the authors is dif-
ferent from Google Ngrams, mainly due to the large amount of data in the
Google Ngrams. This could have affected results obtained by DBE. The re-
sults of the evaluation prove that the task of semantic change detection is
very challenging, in particular, the large number of detected change points
(false positive) drastically affects the performance. Sometimes change points
are detected before or after the change point reported in the gold standard,
this supports the hypothesis that the change of semantics of a word is a con-
tinuous process, which involves long periods before reaching a stabilization.
More studies are necessary to understand which component affects the per-
formance, such an in-depth and explicit analysis of time-series. Moreover,
it is important to underline that the year reported in the dictionary may be
incorrect.

In Figure 2, we show some examples of time-series. For the word ‘atom-
ica’, DWE cumulative is the only approach that fits the change point in the
gold standard, indicating the change point as the decade 1950-1959, after
1945, year of Hiroshima and Nagasaki. We do not detect change points in the
time-series produced by Procrustes point-wise and DBE point-wise, while
we find a change point in the TRI-cumulative time-series in the 1950-1959
decade. For the word ‘palmare’, in the DBE point-wise and Procrustes cu-
mulative time-series, two change points are detected that are too early com-
pared to the change point in the gold standard 1998. Procrustes provided the
right range 1950-1959 for the word ‘Oscar’, years in which for the first time
an Italian film director, Vittorio De Sica, won the Oscar. TRI cumulative and
DBE point-wise do not detect change points, while in the DWE point-wise
time-series a change point is founded in the decade 1960-1969.
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Model Precision Recall F-Measure Change points detected
DWE cumulative .0016 .0840 .0031 13207
DWE point-wise .0020 .0880 .0039 11115
TRI cumulative .0017 .0680 .0033 10233
TRI point-wise .0016 .0680 .0032 10315

DBE cumulative .0000 .0000 .0000 255
DBE point-wise .0019 .0200 .0035 2815

Procrustes cumulative .0016 .0640 .0033 9652
Procrustes point-wise .0019 .0200 .0036 2757

TABLE 4.13: Results of the evaluation.
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Chapter 5

Linguistic Knowledge Graph
Databases

5.1 A New Time-sensitive Model of Linguistic

Knowledge for Graph Databases

ICT provides an unprecedented opportunity to foster and support the preser-
vation and research on immaterial Cultural Heritage. A large part of research
in the Humanities and Cultural Heritage (H&CH) sector involves the collec-
tion and analysis of the material of cultural and/or historical interest. Seman-
tic Web technologies have been used successfully in a number of humanities
projects such as the Pelagios project [97] and the Mapping the Manuscripts
project [35]. Given the relevance of textual materials in this research, it is not
surprising that significant progress has been made in the design of linked
data models for language data (see, for example, the excellent survey in
Khan et al. [106]). A notable example of a multilingual synchronic language
resource that has had a profound impact on the research community is Ba-
belNet [162], a semantic network which connects the English computational
lexicon WordNet [66] with a range of Open Linked Data resources such as
Wikipedia and Wikidata, and many others. Alongside such resources, the re-
search community has developed Semantic Web ontologies such as LeMON
[147] particularly designed for the encoding of linguistic information.

The ability to model (language) data diachronically, is particularly impor-
tant as a large part of H&CH work deals with historical data with a view to
model change over time. In this line of research, some work has started on
the modelling of cognate words and loan relations between words [2]. Re-
lated to this is the treatment of semantic change, the phenomenon concerned
with the change in the meaning of words over time. The automatic detection
of such changes has seen a very rapid development in Natural Language
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Processing (NLP) research in recent years [216, 226, 205], with the majority
of the approaches relying on distributional semantics, i.e. on representations
of the semantics of words trained from corpus data covering different time
intervals via embedding technologies. Some studies, e.g. [8], have advo-
cated for the integration of such distributional approaches with Linked Open
Data technologies, stressing how this best caters for the heterogeneous nature
of the data relevant to this phenomenon, which includes not only language
data, but also data on historical events and entities, as well as of bibliographic
and geographic nature. However, Linked Open Data technologies have some
limitations which we propose to address, as explained below.

Data Bases (DBs) aim at efficient storage, management and retrieval of
data. Knowledge Bases (KBs), investigated in AI, are aimed at supporting
formal reasoning on the available information. A Knowledge Graph (KG) is a
kind of KB [63] where an ontology acts as the data model, and the data are
organized in a graph structure [206]:

ontology + data = knowledge graph.

Combining the advantages of Database Management Systems (DBMSs) for
handling individuals (scalability, storage optimization, efficient handling,
mining and browsing of the data, etc.) with the high-level functionalities
available in KBs would endow applications with much more power than al-
lowed by the DB’s query language alone.

An opportunity for such combination comes from the recent development
of Graph Databases, a kind of NoSQL DBs of which Neo4j [186] is the most
popular representative. Neo4j has been adopted by many big companies and
governmental organizations for several different and relevant use cases, in-
cluding Recommendation, Biology, Artificial Intelligence and Data Analytics,
Social Networks, Data Science and Knowledge Graphs1. Neo4j comes with a
powerful query language (Cypher) and extensive libraries for advanced data
manipulation (APOC).

Unfortunately, formal ontologies and graph DBs refer to different graph
models, which cannot straightforwardly be combined together. The stan-
dard formalism for expressing ontologies and KGs is based on the Resource
Definition Framework (RDF)2. RDF graphs are built upon RDF Triples of the
form:

(Subject, Predicate, Object)

1https://neo4j.com/use-cases/, consulted September 8, 2021.
2https://www.w3.org/RDF/

https://neo4j.com/use-cases/
https://www.w3.org/RDF/
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representing arcs between the Subject and Object nodes. A more general
structure is provided by the Labeled Property Graphs (LPGs) model [188]
(adopted by Neo4j), ensuring great flexibility and expressive power. In LPGs,
both nodes and arcs are associated with unique identifiers, may be labeled,
and can store properties represented as key/value maps. Relevant advantages
brought by LPGs over RDF graphs are3:

• In RDF graphs nodes are atomic, while in LPGs they carry information;
this ensures a much more compact structure in the latter. Consequently,
RDF graphs are much less readable and they also cause a significant
decay in efficiency, especially in browsing-intensive tasks such as Social
Network Analysis or Graph Mining algorithms;

• RDF cannot distinguish different occurrences of the same relationship
between the same pair of entities; this is possible in LPGs thanks to the
unique identifiers of relationships instances;

• RDF cannot attach properties to instances of relationships; the reifica-
tion solution (transforming a relationship instance into an object which
has relationships to the original Subject and Object and to the additional
properties) worsens readability; another partial solution is via annota-
tions.

One limitation of Neo4j is that it is schema-less: the user may apply any
label/type or property to each single node or arc. While ensuring great flex-
ibility, this means that there is no clear semantics for the graph contents. De-
veloping LPG-based KGs requires the definition of an LPG-based ontological
formalism for expressing graph DB schemas, so as to allow data interpretabil-
ity and applications interoperability, and of a mapping between this model
and the standard ontological model adopted in the literature. Research on
this topic resulted in the GraphBRAIN technology, whose peculiarities and
advantages are discussed in [68]. In GraphBRAIN the KB designers must
provide pre-specified data schemas, expressed in the form of LPG-based on-
tologies, that will drive all subsequent accesses to a Neo4j graph DB. By refer-
ring to a schema, the applications will commit to be compliant with it, as in
traditional databases. In this work, we will adopt GraphBRAIN technology
to model time-sensitive linguistic knowledge in a graph database.

3https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-gra
ph-difference/, consulted September 8, 2021.

https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
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5.1.1 GraphBRAIN Graph Database Scheme Format

The GraphBRAIN Schema (GBS) format to define graph DB schemas consists
of an XML file whose tags allow us to exploit the representational features
provided for by the LPG model. Here we will recall its main components
(more details can be found in [68]).

The main structure of the XML tags is reported in Figure 5.1, where the
universal entity Entity and the universal relationship Relationship, acting re-
spectively as the roots of the entity and relationship hierarchies, are implicitly
assumed (recall that in ontological terminology entities correspond to classes
and relationships correspond to object properties). Therefore, entities and re-
lationships are to be specified only starting from the first level of specializa-
tion, which we will call top level. Since each node (resp., arc) in the graph must
be associated with one top-level entity (resp., relationship), the top-level en-
tities (resp., relationships) are to be considered as disjoint. They may be the
roots of specialization hierarchies of sub-entities (resp., sub-relationships).
The set of direct specializations of a (sub-)entity or (sub-)relationship are in
turn disjoint and are not to be intended as a partition: instances that do not fit
any of the specializations of a parent (sub-)entity or (sub-)relationship may
be directly associated with the parent. This design choice prevents multi-
ple inheritances, i.e. associating an instance to many classes belonging to
different branches in the hierarchy. We partially recover this at the level of
instances: when two instances of different (sub-)entities represent the same
object, we link them using an aliasOf relationship. The single reference object
represented by all these instances takes the union of their attributes.

1 domain // tag enclosing the overall ontology

2 [imports]

3 entities // tag enclosing the classes

4 {entity} // see (∗)
5 relationships // tag enclosing the relationships

6 {relationship} // see (∗)

FIGURE 5.1: Main structure of GBS files.

Entities and relationships are specified using the structure shown in Fig-
ure 5.2. Reference is used only in relationships to specify their possi-
ble domain-range pairs, taxonomy allows us to conveniently represent the
specialization-type assertions; all other object properties are to be specified
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in the relationships section. Attributes are mandatory for entities (an entity
instance must be described by some attribute) and optional for relationships
(a relationship may carry information in its very linking two instances). Spe-
cialization is a recursive tag, allowing us to define hierarchies of sub-entities
or sub-relationships. In addition to its own attributes, each specialization in-
herits all the attributes of the (sub-)entities (resp., (sub-)relationships) on the
hierarchy path from its specific specialization section up to the correspond-
ing top-level entity (resp., relationship).

1 (∗) ( entity | relationship | specialization ) tag

2 [references]

3 {reference}

4 [taxonomy]

5 {specialization} // see (∗) (recursive)

6 [attributes] // specifying the data properties

7 {attribute}

FIGURE 5.2: Structure for describing entity and relationship hi-
erarchies in GBS files.

Regarding datatypes, attributes of type integer, real, boolean, string, text take
an atomic value of the corresponding type, where text is intended for free
text of any length. This is different from string, which has a limited max-
imum length that can be specified in the ‘length’ attribute. Attributes of
type date take values in one of the following forms: year; year/month;
year/month/day. Attributes of type select denote a choice in an enumeration
of values; attributes of type tree denote a choice in a tree of values; attributes
of type entity denote 1:1 relationships between an instance of the current en-
tity and an instance of another entity (specified in the ‘target’ attribute of the
tag), e.g., the birthplace of an entity Person would be modeled as an attribute
of type entity with target=‘Place’.
Each GBS schema is intended to describe one domain. However, sometimes
wider domains involve ontological elements that are already described in
more ‘basic’ schemas: for example, the schemas for Cultural Heritage, Food
and Transportations might be exploited in the ontology aimed at support-
ing a touristic application. In such cases, it might be useful to reuse such
schemas, both to standardize the definitions and to build on existing knowl-
edge. The combination of multiple schemas is more powerful a represen-
tation than the simple juxtaposition of their elements. Indeed, their shared
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entities act as bridges that allow, through the relationships available in those
domains, to connect proprietary entities of each domain that would not oth-
erwise have a chance to be related with each other. In the GBS framework,
classes and relationships in different ontologies are considered the same (and
thus are shared) if they have the same name. They may have, however, differ-
ent attributes, reflecting the different perspectives associated with the differ-
ent domains. If an attribute is present in different domains it must have the
same type in all of them. Moreover, additional cross-schema relationships
(and entities) may be defined in the overall ontology, building on the exist-
ing ones. GBS schemas support such scenarios by providing for an optional
section in which existing schemas can be imported.

5.1.2 Mapping onto DB and Ontology

Since graph DBs are naturally suited to express knowledge graphs, i.e.,
knowledge bases based on given ontologies, a fundamental requirement of
our approach is that our schemas can be mapped onto both the DB and to
an OWL representation which can then be processed by a reasoner. In this
section, we report how these two mappings work in practice.
As said, part of the main motivation for defining GBS schemas is to endow
LPG-based graph DBs with a schema that ensures a clear semantics to the in-
formation pieces they contain and provides directions for their management
and interpretation. In this perspective, the DB users will be required to work
according to pre-specified data schemas expressed in the form of ontologies.
In our approach we allow a single graph DB to underlie several domains
(schemas), provided that their elements (entities and relationships) are com-
patible. Each such schema would provide a partial view of the DB contents,
perhaps representing a different perspective.
Let us now show how the GBS elements are implemented using LPG fea-
tures. Leveraging the possibility of using many labels for nodes, each node
is labeled with the specific entity it belongs to and with all the domains for
which it is relevant (e.g., ‘Herbert Simon’ would be labeled with ‘Person’ for
the entity and with ‘economy’ and ‘computing’ for the domains). On the
other hand, since each arc may take at most one type, we use it for specifying
the relationship it expresses.
Concerning attributes, a reserved attribute notes is implicitly assumed for
both nodes and arcs, which allows us to add information not accounted for
by the other, domain-specific attributes. Attribute values of types integer, real,
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boolean, string and text are stored as literal values for the corresponding DB
types, e.g., Neo4j provides the following types matching GBS types: Integer
and Float, Boolean, and String. For types select and tree the string correspond-
ing to the selected value in the list or tree is stored. An attribute of type entity
actually corresponds to a relationship between the current instance and an
instance of the target entity and thus it is stored in the DB as an arc, connect-
ing the nodes corresponding to these two instances and having the attribute
name as type. Finally, albeit Neo4j provides for temporal types, including
‘Date’, following [186] we propose to model attributes of type date as rela-
tionships to one of the following four entities: Day (representing a specific
day of a specific year, with integer attributes day, month, year); Month (rep-
resenting a specific month of a specific year, with integer attributes month,
year); Year (representing a year, with a single integer attribute year).

5.1.3 The Linguistic Knowledge Graph

The Linguistic Knowledge Graph (LKG) aims to capture different aspects of
lexical resources, such as relations between words and concepts, morpholog-
ical, and syntactical information. Moreover, LKG covers diachronic aspects
of language, such as the date of publication of a document, and the birth and
death of an author. The schema we designed takes inspiration from the onto-
logical lexicon model LeMON [54]. For space constraints, we report in Table
5.1 node types and in Table 5.2 the relationships adopted for diachronic anal-
ysis. The lexical unit is represented as node of type InflectedWord or Lemma,
which are subclass of Word, i.e. Lemma IS_A Word and InflectedWord IS_A
Word. The Lemma can be a multi-word expression (mwe), in this case, the
flag mwe is set to True. The respective lemma of an InflectedWord can be re-
trieved exploiting the relationship HAS_LEMMA between InflectedWord and
Lemma. The LexiconConcept is used to represent the word’s meanings, and
each instance of LexiconConcept represents a different meaning. For example,
the LexiconConcept can represent the senses reported on a sense inventory, e.g.
synsets in WordNet [158]. The relationship between a word and its meaning
is expressed using the relationship HAS_CONCEPT among instances of Word
and instance of LexiconConcept. Multiple relationships can be defined over
couples of LexiconConcept using the reflexive relationship SEM_RELATION.
At the same time, reflexive relationships over the Word instances can be de-
scribed by the LEX_RELATION relationship.
The document structure from which words are extracted can be represented
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at different levels of granularity: Sentence,Text, Document, and Corpus. In par-
ticular, each excerpt can be represented as Text or Sentence, which is a subclass
of Text. A Text may belong to (BELONG_TO) a Document and a Document can
be part of (BELONG_TO) a Corpus. The occurrences of a word in a partic-
ular Text are traced by the relationship HAS_OCCURRENCE among Word
and Text. In the case of sense-annotated corpora, such as SemCor, is possible
to specify the occurrences of senses using the relationship HAS_EXAMPLE
among LexiconConcept and Text. Currently, the LKG takes into account two
types of metadata: author and language. The relationship HAS_AUTHOR
among nodes of type Text and nodes of type Person determines the author of
a Text. The relationship HAS_LANGUAGE among nodes of type Text, Doc-
ument, Corpus, and Word to nodes of type Language specifies the respective
language.
The time is modelled using two classes of nodes: TimeInterval, and TimePoint,
both subclasses of TemporalSpecification. The TimeInterval type is used when
the date is not precisely stated, while the TimePoint is used in cases where
the date is fixed. The start and end extremes of the TimeInterval nodes can be
specified using the respective relationships startTime and endTime. In the cur-
rent version of the LKG, time specification is supported for Person and Text.
More specifically, the date of birth and death of authors is specified using
the relationship BORN and DIED between Person and TemporalSpecification.
The publishing date of a text is specified by the relationship PUBLISHED_IN
among Text nodes and TemporalSpecification nodes.

5.1.4 Use case

FIGURE 5.3: Example of a sub-graph for the Lexicon Entry
plane.
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Class Superclass Attributes
Word value:String

Lemma Word
value:String
postag:String
mwe:Boolean

InflectedWord Word value:String
Stem value:String

LexiconConcept Concept id:String
resource:String

Text value:String
Sentence Text
Document title:String
Corpus name:String

TemporalSpecification name:String
description:String

TimePoint TemporalSpecification
Year:Integer
Month:Integer
day:Integer

TimeInterval TemporalSpecification

Person name:String
lastname:String

Language
iso639-1:String
iso639-2:String
enName:String

Category id:String

TABLE 5.1: LKG classes with their respective superclasses and
attributes.

Figure 5.3 shows the sub-graph related to the Lexicon Entry plane. The
extracted sub-graph shows the concepts associated with the Lexicon En-
try by the referring lexical resource, in this case WordNet, using the
HAS_CONCEPT relationship. The concepts sketched are the synsets
airplane.n.01, plane.n.02, plane.n.03, plane.n.04, plane.v.01, plane.v.02. For
each Lexicon Concept, the WordNet glosses are provided by the relation
HAS_DEFINITION.
Moreover, the example sub-graph includes a sentence extracted by the book
The Last Enemy and containing the word plane, i.e.

“My plane had been fitted out with a new cockpit hood”.

The book is represented as a Document instance and belongs to the corpus
Gutenberg (rel. BELONG_TO). The rel. HAS_AUTHOR connects the book
with the author Richard Hillary, who was born on the 20th of April 1919 (rel.
BORN) and died on the 08th of January 1943 (rel. DIED). The book publish-
ing date, i.e. 1942, can be obtained via the rel. PUBLISHED_IN.
The extracted sentence is connected to both the Lexicon Entry plane and the
Lexicon Concept airplane.n.01 respectively by the rels. HAS_OCCURRENCE
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Relationship Subject Object Attributes

IS_A Sentence Text id:Integer
Lemma ∪ InflectedWord Word id:Integer

BELONG_TO
Text Document id:Integer
Document Corpus id:Integer
Text Category

HAS_OCCURRENCE Word Text begin:Integer
end:Integer

{LEX_RELATION} Word Word
HAS_LEMMA Word Lemma
HAS_CONCEPT Word LexiconConcept grade:Float
HAS_EXAMPLE LexiconConcept Text
HAS_DEFINITION LexiconConcept Text
REFER_TO LexiconConcept Concept
{SEM_RELATION} LexiconConcept LexiconConcept
PUBLISHED_IN Text ∪ Document ∪ Corpus TemporalSpecification
HAS_AUTHOR Text ∪ Document ∪ Corpus Person
BORN Person TemporalSpecification
DIED Person TemporalSpecification
startTime TimeInterval TimePoint
endTime TimeInterval TimePoint
HAS_LANGUAGE Text ∪ Document ∪ Corpus ∪Word Language

TABLE 5.2: LKG relationships with their respective subject, ob-
ject and attributes.

and HAS_EXAMPLE. The former rel. addresses the occurrence of the word
plane in the sentence, the latter that plane occurs with the meaning specified
by the Lexicon Concept airplane.n.01, i.e.

“an aircraft that has a fixed wing and is powered by propellers or jets”.

In both relations, the offsets of the word plane are specified by the relationship
attributes, i.e. 3 and 8.
In the proposed example, the time dimension is elicited by three components:
the book publishing date, the date of birth and the date of death of the au-
thor Richard Hillary. The time specifications acquire a relevant role in the
context of Diachronic Linguistics. From the publishing date of The Last En-
emy, we can infer that the occurrence of plane in the extracted sentence is
one of the earlier appearances of the word plane with the airplane.n.01 sense.
Furthermore, information about the Author, such as his influences, and the
historical period in which he lived, can enable deeper analyses, guiding the
study and the definition of the cause-effects relationship in Lexical Semantic
Change phenomena.
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5.2 Using Graph Databases for Historical Lan-

guage Data: Challenges and Opportunities

In 5.1, we adopted GraphBRAIN technology to model time-sensitive linguis-
tic knowledge in a graph database, describing a time-sensitive model of lin-
guistic knowledge that can be used for graph databases. Here, we show an
application of this model to the lexical semantic analysis of Latin data, i.e.
the analysis of the meanings of Latin words. Differently from previous ap-
proaches, such as Basile, Caputo, and Semeraro [12], Hamilton, Leskovec,
and Jurafsky [86], and Carlo, Bianchi, and Palmonari [38], we exploit graph
database potentialities to detect semantic changes in specific concepts.
Latin is in a particularly favourable position among historical languages for
the large-scale analysis of semantic change processes, thanks to a number
of factors. First, Latin researchers now enjoy unprecedented access to digital
data covering over two thousand years of history. Thanks to the ERC-funded
LiLa project 4, seven Latin language resources and six corpora have been
linked at the level of word lemmas so far, making Latin a unique case among
historical languages. Second, we have access to extensive computational lan-
guage resources for Latin, Latin WordNet [160], and digitised dictionaries of
Latin, which provide rich information about words’ semantics and examples
of usage. Finally, focussing on Latin allows us to investigate semantic change
processes over long time spans. Latin has one of the longest recorded histo-
ries of any human language, making it naturally suitable for quantitative
studies [173]. The first inscriptional records date from the sixth century BCE,
and Latin continues to be used to the current day by the Catholic Church
and some academic and legal institutions around the world. Written Latin
diverged from the spoken vernaculars in the second half of the first millen-
nium of the Christian era, but it remained in use as one of the principal chan-
nels of communication across most of Europe for the next thousand years.
The humanists’ conscious effort to reproduce Classical Latin led to a range of
interesting developments, particularly affecting the neo-Latin lexicon to en-
able the expression of new concepts. This extensive chronological span has
raised the question of the extent to which Latin is seen as a dead or fossilised
language (e.g. Herman [89]). However, it remains an open question to what
extent this fossilisation affected the semantics of words, as we know that
the Latin lexicon, in this respect, has remained dynamic (over 4,500 words
have acquired new meanings since the Renaissance; Demo 2022). The extent

4https://lila-erc.eu/

https://lila-erc.eu/
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to which post-classical Latin can really be considered as a “fixed” language
(Roelli [189]) from the point of view of its ability to generate new meanings
of words is still largely unknown beyond anecdotal evidence.

5.2.1 Latin data

The data we loaded into the graph consists of a portion of the LatinISE corpus
[150] annotated at the level of dictionary senses. LatinISE is a Latin corpus
covering the period from the fifth century BCE to the twenty-first century
and contains 10 million word tokens, semi-automatically lemmatised and
part-of-speech tagged. The metadata fields in LatinISE indicate text iden-
tifier, author, title, dates, century, genre, url of source, and optionally book ti-
tle/number and character names (for plays). The annotated dataset was pro-
duced as part of the SemEval shared task on Unsupervised Lexical Seman-
tic Change Detection [205]. 40 Latin lemmas (“target words”) are selected,
of which 20 are known to have changed their meaning with the advent of
Christianity (for example, beatus, which shifted its meaning from ‘fortunate’
to ‘blessed’) and 20 are known to not have changed their meaning between
the BCE era and the CE era. For each of the 40 lemmas, 60 sentences are ran-
domly extracted from LatinISE, 30 of them are from texts dated in the BCE
era, and 30 from texts dated in the CE era. Each sentence was annotated by
at least one expert annotator, according to the DuReL framework [200]. The
annotators were asked to judge the semantic relatedness of an instance of us-
age of a target word with respect to the list of its dictionary definitions using
a four-point scale (Unrelated, Distantly Related, Closely Related, and Identi-
cal). The definitions were taken from the Latin portion of the Logeion online
dictionary (https://logeion.uchicago.edu/) containing Lewis and
Short’s Latin-English Lexicon (1879) [132], Lewis’ Elementary Latin Dictionary
(1890) [131], and Du Fresne Du Cange et al. [60]. See McGillivray et al. [151]
for further details about the dataset and its annotation framework.

MATCH
(centuryNode:TimeInterval)-[:startTime]->(startCentury:TimePoint),
(centuryNode:TimeInterval)-[:endTime]->(endCentury:TimePoint),
(pubNode:TimeInterval)-[:startTime]->(startPub:TimePoint),
(pubNode:TimeInterval)-[:endTime]->(endPub:TimePoint),
(text:Text)-[:PUBLISHED_IN]->(pubNode)
WHERE
centuryNode.description="century"
WITH text,
centuryNode,
CASE WHEN endPub.Year > endCentury.Year THEN endCentury.Year ELSE

endPub.Year END as minEnd,↪→

CASE WHEN startPub.Year > startCentury.Year THEN startPub.Year ELSE
startCentury.Year END as maxStart↪→

https://logeion.uchicago.edu/
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FIGURE 5.5: Graph for the Latin word beatus.

WITH *,
CASE WHEN minEnd-maxStart+1 > 0 THEN minEnd-maxStart+1 ELSE 0 END as

time_overlap↪→

ORDER BY time_overlap DESC
WITH text,
collect({century:centuryNode})[0] AS max
WITH *,
max.century as century
CREATE (text)-[r:CLUSTER]->(century)
RETURN text,century
UNION ALL
MATCH
(centuryNode:TimeInterval)-[:startTime]->(startCentury:TimePoint),
(centuryNode:TimeInterval)-[:endTime]->(endCentury:TimePoint),
(text:Text)-[:PUBLISHED_IN]->(point:TimePoint)
WHERE
centuryNode.description="century" and
point.Year>=startCentury.Year and
point.Year<=endCentury.Year
WITH text, centuryNode as century
CREATE (text)-[r:CLUSTER]->(century)
RETURN text, century;

FIGURE 5.4: Clustering publishing date by centuries

5.2.2 Loading the Latin data in the Linguistic Knowledge

Graph

For each instance of the target words in the Latin corpus we encode:

• the author as Person,
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• the manuscript as Document,

• the year as TimePoint if the date is certain, TimeInterval otherwise,

• the sentence (left context, target word and right context) as Text,

• the definitions of the Lewis and Short Dictionary as LexiconConcept,

• the word lemma as Lemma,

• the inflected forms of the target words as InflectedWord,

• the scores associated with each LexiconConcept as properties of the
HAS_EXAMPLE and HAS_OCCURRENCE relationships.

In order to simplify and make the visualisation more effective, we created the
HAS_EXAMPLE relationship only in cases where the annotation reported a
score of 4. In addition, to make more evident the distribution of senses with
respect to centuries, we associate each date of publication of the texts with
the reference century. We do this via the query given in Figure 5.4. In case
a Text is not associated with a specific TimePoint, it will be linked with the
century having the greatest overlap with the TimeInterval of the text itself.
On the other hand, for texts for which a precise date is specified, the query
associates the Text with the respective century of its year. The centuries are
represented as TimeInterval, and the description attribute is validated with
“century”. A new relationship, called CLUSTER, is so created among nodes
of type Text and nodes of type TimeInterval to indicate the century.
A subgraph for the word beatus is shown in Figure 5.5. The graph shows
the nodes representing the texts from which the word beatus is extracted, the
centuries and the senses given in the Lewis and Short Dictionary. The rela-
tionships among these nodes are CLUSTER and HAS_EXAMPLE. The former
connects nodes of type TimeInterval and nodes of type Text, see 5.4. The latter
links LexiconConcepts and Texts. Most occurrences of the word beatus in the
reference corpus are dated 1st century BCE and 11th century CE. One can im-
mediately notice a difference in the distribution of the senses: “happy” and
“fortunate” on the one hand are associated with the time period BCE (see the
cluster of nodes on the left of Figure 5.5), and “blessed”, on the other hand,
is associated with the time period CE (see the cluster of nodes on the right
of Figure 5.5). In fact, only one sentence in the dataset displays the sense
“blessed” in the first century BCE. Similarly, only two sentences dated CE
contain the word beatus with the meaning of “fortunate”, the latter, on the
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other hand, is dated 1079-1142 CE and is an excerpt from the Sermones of
Petrus Abaelardus.

5.3 Graph Databases for Diachronic Language

Data Modelling

Research in empirical historical semantics requires access to various sources,
from dictionaries and lexicons to encyclopedic information and diachronic
texts. While several scholars have recognized the corpus-based nature of
diachronic semantics, particularly for corpus languages like Latin [173, 76],
quantitative corpus-based studies are yet to pervade historical semantics re-
search. A critical barrier to this is that corpus and lexical resources for his-
torical languages tend to exist in data siloes. While significant progress on
linking lexical resources, tools, and corpora at the level of lemmas has been
made (cf. Passarotti et al. [166] for Latin), linking at the level of word senses
is still missing.
Given the remarkable work done in the design of linked data models for
language data [106], some studies such as Armaselu et al. [8] have already
advocated for integrating corpus approaches with Linked Open Data tech-
nologies to study lexical semantic change, i.e., the phenomenon concerned
with the change in the meaning of words over time. One crucial strategy
for representing the results of research into language change as linked data
is by modeling and publishing them as knowledge bases using a lexicon-
based model, usually OntoLex-Lemon and its various extensions. This in-
cludes the soon-to-be-published Frequency Attestations and Corpus (FrAC)
module, which proposes a new series of classes and properties for linking
elements of a lexicon with corpora [47]. Previous work in this area includes
a proposal to modify the core organizing principles of wordnets in order to
represent semantic shift phenomena [105], as well as work on the representa-
tion of etymologies as Resource Description Framework (RDF) graphs using
OntoLex-Lemon [104] and the integration of temporal information into lin-
guistically linked datasets via a so-called four-dimensionalist approach [107].
Integrating lexical resources and semantically-annotated corpus data at scale
would allow us to gather corpus data on sense distribution information, es-
sential for fully implementing the quantitative turn in historical semantics
[149]. This integration, however, requires efficient handling of large datasets.
An opportunity to combine the efficient storage, management, and retrieval
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of data offered by Data Base Management Systems (DBMSs) with the sup-
port for formal reasoning offered by Knowledge Bases (KBs) comes from the
recent development of Graph Databases. Graph DBMS are intrinsically de-
signed to store schemaless data, making them suitable to dynamic systems
in which merging information is relevant. Unlike traditional DBMSs such
as relational [111] or object-oriented [25] ones, Graph DBMS lack predefined
structures. Neo4j 5 is among the most common graph DBMSs. GraphBRAIN6

technology [69] provides intelligent information retrieval functionalities on a
graph database. Its interface provides end users with access to data employ-
ing schema definitions. Schemes (available in terms of classes, relationships,
and attributes) coordinate how data is presented in the interface. In Basile
et al. [16], we proposed the Linguistic Knowledge Graph, a model based on
graph DBMSs. The Linguistic Knowledge Graph models relations between
concepts and words, information about word occurrences in corpora, and di-
achronic information on both concepts and words. In McGillivray et al. [154],
we show an application of this model to the lexical-semantic analysis of Latin
data.
Our choice to focus on Latin is motivated by several factors. First, Latin has
one of the longest recorded histories of any human language, making it nat-
urally suitable for quantitative studies [173]; this, in turn, allows for corpus-
driven analyses of semantic change processes over long periods. Second, this
language has a particularly favourable position among historical languages:
there is a high availability of extensive Latin corpora in digital form (some of
which have been linked to language resources at the level of word lemmas
in the context of the LiLa project 7) and of computational language resources
such as Latin WordNet [160] and digitized dictionaries such as the Lewis
Short Latin dictionary8.
Focusing on the development of the Latin language, in this work we expand
the range of Latin language resources included in the Linguistic Knowl-
edge Graph for the study of lexical semantic change in Latin.9 Our con-
tributions include: (i) the ingestion of Latin WordNet into the Linguistic
Knowledge Graph; (ii) a new curated linking between existing resources for
Latin, namely Latin WordNet [160, 26] and the SemEval 2020 Task 1 Latin
dataset [148], a sense-annotated portion of the LatinISE diachronic corpus of

5https://neo4j.com/
6http://193.204.187.73:8088/GraphBRAIN/
7https://lila-erc.eu/
8https://lila-erc.eu/data/lexicalResources/LewisShort/Lexicon
9Our code and data are available at https://github.com/linguisticGraph/lat

in-graph

https://neo4j.com/
https://lila-erc.eu/
https://lila-erc.eu/data/lexicalResources/LewisShort/Lexicon
https://github.com/linguisticGraph/latin-graph
https://github.com/linguisticGraph/latin-graph
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Latin [151];10 (iii) the integration of external contextual information (Wiki-
data) about the occupations of Latin authors. The term ‘occupation’ is here
used in a broad sense, to refer to various types of political, cultural and so-
cietal profiles that identify authors in Wikidata. These could be e.g., priests,
philosophers, historians, hagiographers, among others.

5.3.1 Resources

Dataset

LatinISE contains approximately 10 million word tokens from texts dat-
ing from the fifth century BCE to the contemporary era; it has been semi-
automatically lemmatized and part-of-speech tagged. The corpus includes
metadata fields indicating text identifier, author, title, dates, century, genre,
URL of the source, and book title/number and character names (for plays).
The semantically annotated dataset we use here was created as part of the
SemEval shared task on Unsupervised Lexical Semantic Change Detection
[205] and will be henceforth referred to as the SemEval Latin dataset. It con-
tains in-context annotations for 40 Latin lemmas, 20 of which are known to
have changed their meaning concerning Christianity (for example, beatus,
which shifted its meaning from ‘fortunate’ to ‘blessed’), and 20 are known
not to have changed their meaning between the BCE era and the CE era. For
each of these lemmas, 60 sentences were annotated, of which 30 were ran-
domly extracted from BCE texts and 30 from CE texts. The annotation was
conducted following a variation of the DuReL framework [200] described in
Schlechtweg et al. [205]: the degree by which a usage instance of a target
word is related to each of its possible dictionary definitions was annotated
using a four-point scale (Unrelated, Distantly Related, Closely Related, and
Identical). The definitions were drawn from the Logeion online dictionary
(https://logeion.uchicago.edu/), which contains Lewis and Short’s
Latin-English Lexicon (1879) [132], Lewis’ Elementary Latin Dictionary (1890)
[131], and the dictionary by Du Fresne Du Cange et al. [60]. The details of the
annotation are described in McGillivray et al. [151].

Curated Linking

We manually linked each word sense of the SemEval Latin dataset to one or
more WordNet synsets. We started with the dataset provided by the LiLa

10Openly available at https://lindat.mff.cuni.cz/repository/xmlui/hand
le/11234/1-2506.

https://logeion.uchicago.edu/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2506
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2506
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project [73], which contains a sample of 10,314 lemmas from Latin WordNet
(LWN) [160, 26]. The LiLa team verified and corrected, where necessary, the
synsets associated with each lemma of the sample and linked them to version
3.0 of Princeton WordNet (PWN) [67, 158]. However, as the LiLa dataset only
covers 22 of the 40 lemmas in our dataset, we used LWN as a reference for
the remaining 18 lemmas. We converted the synset codes 1.6 used by LWN
to version 3.0 of PWN for consistency.
The senses assigned to the target words in the SemEval Latin dataset of-
ten condensed multiple meanings into a single definition, requiring multiple
synsets to be linked to the same meaning to capture all nuances. For example,
the sense “understanding, judgment, wisdom, sense, penetration, prudence”
of the lemma consilium was linked to four synsets.
In some cases, a particular sense could not be described by any of the as-
signed synsets in the LiLa dataset. In such cases, we searched for the lemma
in LWN and selected a more appropriate synset. This was the case e.g. for the
adjective acerbus and one of its meanings in the SemEval Latin dataset “(of
things) heavy, sad, bitter”. For this meaning we selected the synset 01650376-
a “psychologically painful” from LWN. When we could not find the synset
in either LWN or the LiLa dataset, we looked for the most suitable synset in
PWN. However, for some meanings specific to Roman culture and institu-
tions, we could not find a suitable synset, such as with the meaning ‘Virtue,
personified as a deity’ of virtus. In these cases, we did not link the sense to
WordNet.

Contextual Information

In some instances, the metadata field of the SemEval Latin dataset (which
indicates the author and title of the text, dating, and genre) was noisy, in-
correctly structured, or incomplete. Wikidata is an extensive, collaboratively
maintained knowledge base [229], hosting more than one hundred million
items. We exploited Wikidata for de-noising and linking the authors of the
documents containing the sentences in our dataset.
First, we extracted the Wikidata entities for which the author’s occupation is
specified (wdt:P106, occupation), and Latin (wd:Q397, Latin) is one of the writ-
ing languages for the author (wdt:P6886, writing language). We retrieve infor-
mation about each author in the form of key/value properties. Author names
in the SemEval Latin dataset can occur in different languages and different
forms, for example praenomen and nomen followed by cognomen e.g., Mar-
cus Tullius Cicero; cognomen followed by praenomen and nomen e.g., Cicero,
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Marcus Tullius; only cognomen e.g., Cicero; only praenomen and nomen e.g.,
Marcus Tullius. We processed the author’s mentions in the SemEval Latin
dataset and the writer labels and aliases extracted from Wikidata, perform-
ing lowercase and punctuation removal. Matching is realized by computing
the Levenshtein distance [199] between the author reported in the SemEval
dataset and all the collected surface forms (i.e., labels/aliases) from Wikidata.
The surface forms are then ranked by decreasing Levenshtein distance. If the
Levenshtein distance between the author’s mention and the top-ranked sur-
face form is less than a fixed threshold, i.e., δ = 0.1, the entity referenced by
the surface form is linked to the author’s mention. For each author, Wikidata
provides rich information, such as biographical data, the author’s works, and
events that influenced their life and production. In this study, we focus on
occupation information: we encode the information provided by Wikidata
about the occupations of the author exploiting the property wdt:P106 (occu-
pation). In particular, we create nodes of type Occupation for each occupation
retrieved in Wikidata, generating a relationship between the author and their
respective occupation.

Latin WordNet Ingestion

The Latin WordNet (LWN) project is an initiative to create and share a com-
mon lexico-semantic database of the Latin language. The project originated
as a branch of the MultiWordNet [171] project. For diachronic analyses, link-
ing linguistic resources with temporal information allows us to uncover in-
stances of semantic changes in the usage of words. Hence, we provide a
mechanism to enrich the Linguistic Knowledge Graph with Latin WordNet
and exploit the hierarchical structure of the relationships between synsets.
In Section 5.1.1, we described GraphBRAIN technology and its reliance on
schemes/ontologies to deliver information extraction and reasoning func-
tionalities. We mapped the Latin WordNet data with the portion of our on-
tology specifically devoted to linguistic analysis and understanding. Further
details about scheme specifications for document representation are avail-
able in [70]. Here we describe the mapping between the lexical database and
our schema. In LWN, we identified the following resources, grouped into
separate Comma Separated Value (CSV) files: lemma, lexical_relation, lit-
eral_sense, metaphoric_sense, metonymic_sense, phrase, semantic_relation,
synset. Each resource has features that may be seen as classical columns in a
relational database. From now on, we refer to specific fields as resource.field
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to uniquely identify them and motivate how we map them. The alignment
process is as follows:

• lemma: a specific lemma is embedded in our class Lemma. A Lemma is
characterized by a unique id, a lemma (its value), and a PoS tag (mod-
elled as a relationship). For our purposes, the class PartOfSpeech col-
lects all the pos tags used, following the Universal PoS Tags standard11.
We can represent other fields expressed in LWN, such as lemma.uri.

• lexical_relation: this represents a relationship between two Lemmas.
The field lexical_relation.type specifies the type of relationship. We mod-
elled the present ones with some explicit names which express their
meanings: ANTONYMOUS_OF, PERTAINS_TO (to refer to the type
of relation indicated by the attribute of the relations), with their corre-
sponding inverses, e.g. IS_PAST_PARTICIPLE_OF.

• literal_sense: this represents a relationship between a lemma, iden-
tified by the field literal_sense.lemma, and a synset, identified by lit-
eral_sense.synset. We call this relationship expresses. We highlight
that the relationship has a “literal” sense by adding a specific attribute
sense. Additional information about the period and genre is available.

• metaphoric_sense: similarly to the previous one, this represents a
relationship between a lemma and a synset, where the sense is
“metaphoric”.

• metonymic_sense: as before, but the sense is “metonymic” in this case.

• phrase: a phrase is a word or a multi-word expression. In both cases,
the concept is expressed by the class Lemma since for our purposes
both concepts play an equally important role when analysing semantic
changes. Again, we have the PoS tag information, which is modelled
in the same way described above.

• semantic_relation: a relationship between two synsets. Based on the
semantic_relation.type several relationships may be expressed. They
are mapped into the following ones and their corresponding inverses:
PART_OF, HAS_SUBCLASS, ATTRIBUTE_OF, SIMILAR_TO,
ANTONYMOUS_OF, PERTAINS_TO, PART_PARTICIPLE_OF,
CAUSES, and ENTAILS.

11https://universaldependencies.org/u/pos/

https://universaldependencies.org/u/pos/
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• synset: a synset is embedded in LexiconConcept while its property
synset.gloss, which is the description of the synset, is represented as
the attribute description of the class LexiconConcept. synset.gloss is the
description of the synset and is mapped onto the attribute description.

Thanks to this mapping, we can acquire the LWN resource and represent it
in our formalism, which allows us to leverage the connections between the
different datasets, as explained via examples in the next section.

FIGURE 5.6: Subgraph for the word humanitas, including the
sentences in which the lemma humanitas occurs in the SemEval
Latin dataset, the century of the works from which the sen-
tences were extracted, the annotated senses in the SemEval
Latin dataset, and the curated links between the senses and the
synsets in Latin WordNet. The sentences are represented as Text
nodes (in blue), the senses and the synsets as LexiconConcept
nodes (in green), and the centuries as TimePoint nodes (in red).

5.3.2 Analysis and Discussion

Figure 5.6 shows the subgraph for the word humanitas. The occurrences of
humanitas are annotated in the SemEval dataset with three senses: (i) ‘hu-
man nature, humanity’, (ii) ‘humanity, philanthropy’, and (iii) ‘mankind’.12

12A fourth sense ‘liberal education, good breeding, the elegance of manners or language,
refinement’ was annotated in the Latin dataset, but not encoded in the graph, since the au-
thor matching described in Section 2.3 failed.
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(A) Subgraph for poena. The synsets for poena are: (i) retribution.n.01: a justly deserved penalty,
(ii) suffering.n.04: feelings of mental or physical pain, (iii) agony.n.01: intense feelings of suffering;

acute mental or physical pain

(B) Subgraph for salus. The synsets for salus are: (i) health.n.01: a healthy state of well-being,
(ii) redemption.n.01: (Christianity) the act of delivering from sin or saving from evil, (iii) greet-

ing.n.01: an acknowledgment or expression of goodwill

FIGURE 5.7: Sub-graphs: (a) beatus. (b) poena (c) salus
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In the curated link, we associate the sense (i) to the humanness.n.01 synset,
the sense (ii) to the synsets kindness.n.01, kindness.n.03, and courtesy.n.03
and sense (iii) to the synset world.n.08. According to the Thesaurus Linguae
Latinae [222], which confirms the first attestation of all senses in the 1st cen-
tury BCE, the sense (ii) ‘humanity, philanthropy’ developed from the more
general sense (i) ‘human nature, humanity’ which refers to human nature in
general. The subgraph shows that the three senses are attested at least once
in passages dated 1st century BCE. However, the graph shows that the sense
of ‘philanthropy’ dominates all other senses in the 1st century BCE. In the
transition to the CE period, the sense of ‘humanity’ prevails regarding the
number of annotations, and the two meanings coexist in the CE period.
By ascending the WordNet hierarchy, we can gain deeper insight into the re-
lationship between the two senses. The sense (ii) ‘humanity, philanthropy’
and the sense (i) ‘human nature’ are connected via two paths: sense (ii) orig-
inates from the quality.n.01 synset (i.e. ‘an essential and distinguishing at-
tribute of something or someone’); sense (i) from the attribute.n.02 synset
(i.e., ‘an abstraction belonging to or characteristic of an entity’). The two
senses have in common the quality.n.01 synset, but the sense (ii) ‘humanity,
philanthropy’ is directly linked to kindness.n.01 synset, and to a higher de-
gree of the WordNet hierarchy to the morality.n.01 synset (i.e., ‘concerned
with the distinction between good and evil or right and wrong’). The ad-
ditional information provided by including the WordNet hierarchy in the
graph allows us to show the type of semantic relationship between the two
predominant senses of humanitas. The more general sense (i) ‘human nature’
specializes in its meaning in the sphere of morality, originating the sense (ii)
‘philanthropy’. In the example of humanitas shown in Figure 5.6, the injected
information from WordNet was exploited to analyze the semantic relation-
ship between the meanings of the lemma humanitas. While the synset tax-
onomy in this example helps us track and classify phenomena of semantic
change, including other types of information retrievable from the metadata
can help gain further insights into the context of the semantic change. We
add information about the authors’ occupations in the examples shown in
Figure 5.7.
In Figure 5.7, three examples of subgraphs are shown. The three graphs refer,
respectively, to the encoded information for the Latin lemmas beatus, poena,
and salus. In particular, we filtered for nodes of type Text (blue nodes), Cen-
tury (red nodes), Synset (green nodes), and Occupation (yellow nodes). We
grouped the Text nodes by occupation and century, i.e., we created an explicit
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link between nodes of type Text and nodes of type TimePoint and between
nodes of type Text and nodes of type Occupation.
Combining queries at the level of the annotated senses, WordNet synsets,
text metadata and textual data at once, users can have access to rich nu-
anced information, which is very valuable for quantitative diachronic seman-
tic analyses, both on specific words and whole lexical fields. The graphs in
Figure 5.7 seem to show some trends in semantic change, all related to Chris-
tianity. The lemma beatus was annotated in the SemEval dataset with five
senses: (i) ‘happy,’ (ii) ‘fortunate’, (iii) ‘rewarded’, (iv) ‘rich’, and (v) ‘blessed’.
The graph shows that the senses (i) ‘happy’, (ii) ‘fortunate’, (iii) ‘rewarded’,
and (iv) ‘rich’ all emerge starting from the 1st century BCE in the annotated
dataset. On the other hand, sense (v) ‘blessed’ emerges later with the advent
of Christianity, as we can see in correspondence with the CE nodes. In this
case, there seems to be a replacement of the previous senses in favour of the
Christian sense.
Additionally, if we consider the nodes of type Occupation, a noticeable differ-
ence emerges between the two (groups of) meanings: in the cluster of occupa-
tion nodes connected to the Christian sense, we can observe profiles related
to theological and religious activity, e.g., priests, hagiographers, which do not
appear to be connected to the other senses. The same type of observations
can be made for salus, which initially has the meanings (i) ‘health’ and (ii)
‘greeting’, and, subsequently, develop the Christian sense of (iii) ‘salvation,
deliverance from sins’. However, in this case, we can notice the difference
with beatus in the type of semantic change, as the new meaning (iii) ‘salva-
tion’ replaces or dominates the previously attested meanings but continues
to coexist with them.
The lemma poena also presents an example of semantic change in which the
new meaning does not entirely replace the previous ones. The new sense of
‘suffering, pain’, which emerges in the CE nodes, continues to coexist with
the sense of ‘punishment’, which was attested from the 1st century BCE in
the annotated dataset. In the case of poena, the contrast between the two
clusters of occupation nodes is even more evident. The sense of punishment
is often associated with authors classified as related to the legal world, e.g.,
legislator, lawyer, and jurist. In contrast, nodes related to the Christian and
theological world appear in the case of salvation, e.g., theologian, priest, and
presbyter.
The graphs in Figure 5.7 are in line with that we know about semantic
changes prompted by the advent of Christianity, which invested many words
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already in use in pre-Christian Latin with new meanings closely related to the
Christian world [36]. Moreover, the lemmas shown in Figure 5.7 illustrate
the different types of interaction between older and new senses described
in literature [224, pp. 10–12]: in some cases, the two senses can continue to
coexist, as for the lemmas salus and poena (a phenomenon called ‘layering’
[94, p. 22]); in others, as for the lemma beatus, the relationship between the
new sense and the older ones is unbalanced as the new sense becomes more
prominent in a society invested in Christian values.
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Chapter 6

Benchmarking Unsupervised
Lexical Semantic Change Detection

6.1 A diachronic Italian corpus based on “L’Unita”

6.1.1 Motivation and Background

Diachronic linguistics, as proposed by de Saussure in his Cours de languis-
tique générale, is one of the two major temporal dimensions of language study
and has a long tradition in Linguistics. Recently, the increasing availability
of diachronic corpora as well as the development of new NLP techniques
for representing word meanings has boosted the application of computa-
tional models to investigate historical language data [86, 216, 219]. This
culminated in SemEval-2020 Unsupervised Lexical Semantic Change Detec-
tion [205], the first attempt to systematically evaluate automatic methods for
language change detection.
Italian is a Romance language which has undergone a large amount of
changes in its history. Its official adoption as a national language occurred
only after the Unification of Italy (1861), having previously been a literary
language. Diachronic corpora of Italian are currently available and accessi-
ble to the public (e.g., DiaCORIS and MIDIA). Unfortunately, restricted ac-
cess/distribution of these resources limits their utilisation and actually pre-
vents the investigation of more recent NLP methods to the diachronic dimen-
sions.
To obviate this limit, we collect and make freely available1 a new corpus
based on the newspaper “L’Unità”. Founded by Antonio Gramsci on Febru-
ary, 12th 1924, “L’Unità” was the official newspaper of the Italian Communist
Party (PCI 2, henceforth). The newspaper had a troubled history: with the

1https://github.com/swapUniba/unita/
2It is the acronym of Partito Comunista Italiano.

https://github.com/swapUniba/unita/
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dissolution of PCI in 1991, the newspaper continued to live as the official
newspaper of the new Democratic Party of the Left (PDS/DS) until July, 31th

2014. After that date, it ceased its publication until June, 30th 2015, and it was
definitely closed on June, 3rd 2017.
Since 2017, the historical archive of “L’Unità” has been made again visible
and available on the Web.3 One of the main issues of this resource is the
lack of information about who owns the rights of the original archive. To
our knowledge, the online version of the archive was legally obtained by
downloading the original archive before the closure of the newspaper. The
current archive, available online, does not contain the local editions of the
newspaper and the photographic archive.
The main contribution of this work lies in the resource itself and its accessi-
bility to the research community at large. The corpus is distributed in two
formats: raw text and pre-processed. The validity of the corpus for the au-
tomatic study of language change is tested as part of the DIACR-Ita task 4 at
EVALITA 2020. However, we illustrate some further potential applications
of the use of the corpus.

1 Ehud Ehud PROPN SP nsubj 3 B-PER False False False Xxxx
2 Barak Barak PROPN SP flat:name 1 I-PER False False False Xxxxx
3 scende scendere VERB V ROOT 0 O False False False xxxx
4 direttamente direttamente ADV B advmod 3 O False False False xxxx
5 in in ADP E case 6 O False False True xx
6 campo campire NOUN S obl 3 O False False False xxxx
7 per per ADP E mark 8 O False False True xxx
8 ufficializzare ufficializzare VERB V advcl 3 O False False False xxxx
9 la la DET RD det 10 O False False True xx
10 candidatura candidatura NOUN S obj 8 O False False False xxxx
11 dell’ dell’ DET DD det 13 O False False False xxxx’
12 ex ex ADJ A amod 13 O False False True xx
13 premier premier NOUN S obj 8 O False False False xxxx
14 laburista laburista PROPN SP amod 13 O False False False xxxx

TABLE 6.1: An example of generated token features for the sen-
tence: “Ehud Barak scende direttamente in campo per ufficializzare la
candidatura dell’ex premier laburista.” [Ehud Barak takes the field

to announce the candidacy of the former labour leader.]

6.1.2 Corpus Creation

The corpus creation consists of several steps:

Downloading All PDF files are downloaded from the source site and stored
into a folder structure that mimics the publication year of each article.

3https://archivio.unita.news/
4https://diacr-ita.github.io/DIACR-Ita/

https://archivio.unita.news/
https://diacr-ita.github.io/DIACR-Ita/
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Text extraction The text is extracted from the PDF files by using the Apache
Tika library.5 First, the library tries to extract the embedded text if present
in the PDF; otherwise the internal OCR is exploited. It is important to no-
tice that during this step several OCR errors occur. In particular, during the
processing of the early years, the newspaper has an unconventional format
where a few large pages contain many articles split into several columns.
Due to this format, the OCR is not able to correctly identify the column
boundaries.

Cleaning In this step, we try to fix some text extraction issues. The previous
step leaves an empty line when the end of a paragraph is reached. However,
a paragraph can be composed of multiple lines which sometimes contain
a word break at the end of the line. We manage word breaks in order to
obtain a paragraph on a single text line; we still retain the empty line for
delimiting paragraphs. Moreover, we remove noisy text by adopting two
heuristics: (1) paragraphs must contain at least five tokens composed by only
letter characters; (2) 60% of the paragraph must contain words that belong to
a dictionary. The dictionary is built by extracting words that occur into the
Paisà corpus [140] taking into account only words composed by letters. The
output of this process is a plain text file for each year where each paragraph
is separated by an empty line.

Processing All plain text files produced by the cleaning step are processed
by a Python script that splits each paragraph into sentences and analyses
each sentence by performing several natural language processing tasks. We
rely on the spaCy6 Python library for performing: tokenization, PoS-tagging,
lemmatization, named entity recognition and dependency parsing. The
spaCy library provides performance comparable to the state-of-the-art ap-
proaches with a good processing speed when compared to other NLP tools.7

We also provide the plain text in order to allow the processing with other
tools. Each plain text file is analysed and transformed in vertical format
adding two tags: <p>...</p> for the begin and the end of a paragraph,
and <s>...</s> for delimiting sentences. The vertical format is compli-
ant to the CONLL representation standard and the tag-set for the Italian8 is

5https://tika.apache.org/
6https://spacy.io/
7https://spacy.io/usage/facts-figures
8https://spacy.io/api/annotation

https://tika.apache.org/
https://spacy.io/
https://spacy.io/usage/facts-figures
https://spacy.io/api/annotation
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automatically mapped to the Universal Dependencies scheme9.

Feature Description
Position The token position in the sentence

starting from 1
Token The token
Lemma The lemma
PoS-tag The PoS tag
Tag Additional tags, such as morphological tags
Dependency Dependency type
Head position Head position of the dependency
IOB2 NE IOB2 tag of the named entity
Punctuation Boolean indicating if punctuation
Space Boolean indicating if space character
Stop word Boolean indicating if stop word

Shape
The word shape – capitalisation,
punctuation, digits

TABLE 6.2: Description of token features.

The corpus spans 67 years from 1948 to 2014. For each year, we provide
two files: (1) the plain text file containing the cleaned text extracted from
PDF where each paragraph is delimited by an empty line; (2) a vertical file.
In the vertical file format, exemplified in Table 6.1, each paragraph is split
in sentences and tokens occurring in each sentence are annotated with 12
features, whose symbols and descriptions are reported in Table 6.2.

6.1.3 Corpus Statistics

In this section, we report some corpus statistics. Table 6.3 illustrates the to-
tal number of occurrences and the dictionary size for each feature (token,
lemma, and named entity, respectively).

dict. size occurrences
token 4,177,128 425,833,098
lemma 4,053,561 425,833,098
named entity 5,429,470 26,330,273

TABLE 6.3: Dictionary size and total number of occurrences.

The corpus contains more than 400 million occurrences and more than 25 mil-
lion named entities occurrences. The most frequent entities are Italia, Roma
and PCI. This result is expected since “L’Unità” was the newspaper of the
Italian Communist Party.

9http://universaldependencies.org/u/pos/

http://universaldependencies.org/u/pos/
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Figure 6.1 shows the PoS-tags10 frequency over time for open-class tags:
NOUN, VERB, ADJective, ADVerb and PROPer Noun. The most frequent
tag is NOUN followed by VERB, PROPN, ADJ and ADV. We observe that
the frequency of PoS-tags is almost constant over time (excluding PROPN)
underlying a stable language style that is typical for the news domain. We
observe a variable usage of proper nouns, that may be related to the differ-
ent types of events narrated over time that do not depend on a particular
language style. Moreover, after the 1976, we observe a complementary trend
between the adjectives and adverbs frequencies: the former slightly increase
over time, while the latter decrease. This may denote a change in the lan-
guage style that has varied to prefer the usage of adjectives over adverbs in
more contemporary writing.

FIGURE 6.1: PoS tags frequency over time for: NOUN, VERB,
ADJective, ADVerb

An interesting analysis concerns the tokens occurrences per year, whose re-
sult is plotted in Figure 6.2. We observe a low number of occurrences in
the period (1948-1970), probably due to two factors: (1) the first period con-
tains many OCR errors and noise removed during the cleaning step; (2) the
number of pages of the newspaper increases over time. The latter may also
explain the lower number of tokens for some of the years, such as 1981, 1995,
2000, 2007-2008, 2014. In particular, the latest years are characterised by man-
agement issues (e.g. the newspaper liquidation in July 2000) that were re-
flected in the newspaper format.
We also compute the time series of normalised occurrences (frequency) for
each token, lemma, and named entity. All the aforementioned statistics are
distributed in separate files together with the corpus.
As an illustrative example of the potential use of the corpus, in Figure 6.3
we plot the time series for two keywords. The first, comunismo [comunism],

10The used tag-set is described here https://universaldependencies.org/u/po
s/

https://universaldependencies.org/u/pos/
https://universaldependencies.org/u/pos/
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FIGURE 6.2: The plot of token occurrences per year.

is assumed to be pivotal to this corpus due to the specific role played by
the newspaper in relation to the PCI. The second keyword, antipolitica [anti-
politics], is particularly interesting as it is a term used to describe the current
state of the political life in Italy, characterised by a high level of distrusts in
parties and, more generally, in politics.

FIGURE 6.3: Plot of the time series for the words comunismo
[comunism] and antipolitica [anti-politics].

The lifespan of comunismo [comunism] appears to be extremely influenced
and characterised by history. We observe two big spikes in the time series.
The first is around 1962, one of the harshest year of the Cold War, witness-
ing the Cuban missile crisis. The second spike is between 1989 and 1991,
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corresponding to the beginning of the worldwide crisis of the communist
movement and the dissolution of PCI. After 1991, the frequency of the term
constantly decreases. Interestingly, the frequency for comunismo [comunism]
is low between 1968 and 1988, a period of time that witnessed a cultural hege-
mony of leftist movements and strong criticism against the U.S.S.R. On the
other hand, we observe that antipolitica [anti-politics] is a recent term whose
first appearance dates back to 1977. The word frequency starts to increase
slowly from 1999 and it reaches its peak in 2012 with the unexpected elec-
toral success of the populist 5 Star Movement at the local elections in May.
Using the same approach, we plot the time series for two named entities:
PCI and Berlusconi. We notice that the frequency of PCI start dropping in
1986, few years before its dissolution in 1991, while the name Berlusconi has
a substantial increase in 1994 when he became the Italian Prime Minister.

FIGURE 6.4: Plot of the time series for the entities PCI and
Berlusconi.

Finally, we investigate how the vocabulary changes between two periods:
T1 = [1948 − 1958] and T2 = [2004 − 2014]. For each period we build the vo-
cabulary Vi taking into account only words that occur at least 10 times. Then,
we compute the differences between the two dictionaries, V1 \ V2 and V2 \ V1,
and sort the words in descending order by occurrences. We observe that
the words agrari, imperialisti, mezzadri, monarchici11 appear frequently in T1

and never appear in T2, conversely the words euro, centrosinistra, centrodestra,
immigrati12 appear only in T2. A similar analysis was executed on named
entities13 and shows that Scelba, D.C., PSI, U.R.S.S. are specific to T1, while
Berlusconi, PD, Bush, Obama to T2, revealing differences in topics and people
covered by the newspaper.

11In English: agrarians, imperialists, sharecroppers, monarchists.
12In English: euro, centre-left politics, centre-right politics, immigrants.
13In this case we consider only entities that appear at least 5 times.
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6.2 DIACR-Ita: A benchmark for Lexical Semantic

Change Detection for the Italian language

6.2.1 Background and Motivation

The Diachronic Lexical Semantics (DIACR-Ita) task focuses on the automatic
recognition of lexical semantic change over time, combining together com-
putational and historical linguistics. The aim of the task can be shortly de-
scribed as follows: given contextual information from corpora, systems are
challenged to detect if a given word has changed its meaning over time.
Word meanings can evolve in different ways. They can undergo pejoration
or amelioration (when meanings become respectively more negative or more
positive) or they can be subject of broadening (also referred to as generaliza-
tion or extension) or narrowing (also known as restriction or specialization). For
instance, the English word dog is a clear case of broadening, since its more
general meaning came from the late Old English “dog of a powerful breed”
[223]. On the contrary, the Old English word deor with the general meaning
of “animal” became deer in present-day English. Semantic changes can be
further classified on the basis of the cognitive process that originated them,
i.e. either from metonymy or metaphor. Lastly, it is possible to distinguish
among changes due to language-internal or language-external factors [93].
The latter usually reflects a change in society, as in the case of technological
advancements (e.g. cell, from the meaning of “prisoner cell” to “cell phone”).
The problem of the automatic analysis of lexical semantic change is gaining
momentum in the Natural Language Processinng (NLP) and Computational
Linguistics (CL) communities, as shown by the growing number of publica-
tions on the diachronic analysis of language and the organisation of related
events such as the 1st International Workshop on Computational Approaches
to Historical Language Change14 and the project “Towards Computational
Lexical Semantic Change Detection”15. Following this trend, SemEval 2020
has hosted for the first time a task on automatic recognition of lexical seman-
tic change: the SemEval 2020 Task 1 - Unsupervised Lexical Semantic Change
Detection16 [205]. While this task targets a number of different languages,
namely Swedish, Latin, and German, Italian is not present.
Many are the existing approaches, data sets, and evaluation strategies used
to detect semantic change, or drift. Most of the approaches rely on diachronic

14https://languagechange.org/events/2019-acl-lcworkshop/
15https://languagechange.org/
16https://competitions.codalab.org/competitions/20948

 https://languagechange.org/events/2019-acl-lcworkshop/
https://languagechange.org/
https://competitions.codalab.org/competitions/20948
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word embeddings, some of these are created as post-processing of static
word embeddings, such as Hamilton, Leskovec, and Jurafsky [86]; while oth-
ers create dynamic word embeddings where vectors share the same space for
all time periods [55, 236, 192, 61]. Recent work exploits word sense induction
algorithms to discover semantic shifts [217, 95] by analyzing how induced
senses change over time. Finally, Gonen et al. [80] propose a simple approach
based on the neighbors’ intersection between two corpora. The neighbor-
hood of a word is separately computed in each corpus, then the intersection
is exploited to compute a measure of the semantic shift. The neighborhood
in each corpus can be computed using the cosine similarity between word
embeddings built on the same corpus without using vectors alignment. A
more complete state of the art is described in a critical and concise way in the
latest surveys [216, 118, 219].
Almost all of the previously mentioned methods use English as the target
language for the diachronic analysis, leaving the other languages still under-
explored. To date, only one evaluation has been carried out on Italian using
the Kronos-it dataset [13].
The DIACR-Ita task at the EVALITA 2020 campaign [20] fosters the imple-
mentation of new systems purposely designed for the Italian language. To
achieve this goal, a new dataset for the evaluation of lexical semantic change
on Italian has been developed based on the “L’Unità” corpus [14]. This is the
first Italian dataset manually annotated with semantic shifts between two
different time periods.

6.2.2 Task Description

The goal of DIACR-Ita is to establish if a set of target words change their
meaning across two time periods, T1 and T2, where T1 precedes T2.
Following the SemEval 2020 Task 1 settings, we focus on the comparison of
two time periods. In this way, we tackle two issues:

1. We reduce the number of time periods for which data has to be anno-
tated;

2. We reduce the task complexity, allowing for the use of different models’
architectures, and thus widening the range of potential participants.

During the test phase, participants have been provided with two corpora
C1 and C2 (for the time periods T1 and T2, respectively), and a list of tar-
get words. For each target word, systems have to decide whether the word
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changed or not its meaning between T1 and T2, according to its occurrences
in sentences in C1 and C2. For instance, the meaning of the word “imbar-
cata” (i.e. embarked) is known to have expanded, i.e. it has acquired a new
sense, from T1 to T2. The word originally referred to an acrobatic manoeuvre
of aeroplanes. Nowadays, it is also used to refer to the state of being deeply
in love with someone. This will be reflected in different occurrences of the
word usage in sentences between C1 and C2.
The task is formulated as a closed task, i.e. participants must train their
model only on the data provided in the task. However, participants may
rely on pre-trained word embeddings, but they cannot train embeddings on
additional diachronic Italian corpora, they can use only synchronic corpora.

6.2.3 Data

This section provides an overview of the datasets that were made available
to the participants in the two different stages of the evaluation challenge,
namely trial and test.

Trial data

The trial phase corresponds to the evaluation window in which the partici-
pants have to build their systems before the official test data are release. The
following data were provided:

• An example of 5 trial target words for which predictions are needed;

• An example of gold standard for the trial target words;

• A sample submission file for the trial target words;

• Two trial corpora that participants could use to develop their models
and check the compliance of the generated output to the required for-
mat;

• An evaluation and some additional utility scripts for managing cor-
pora.

Trial data do not reflect the actual data from C1 and C2. The sample training
corpora and target words were artificially built just to provide an example
of the data format for developing their systems. Since the training corpus is
publicly available on the Internet, we decided not to release these data during
the trial phase to prevent participants from identifying the source data and
consequently potential set of target words.
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Test data

For the test phase, the following data were provided:

• A diachronic split of the “L’Unità” corpus into the two sub-corpora, C1

and C2, each belonging to a specific time period;

• 18 target words, among which 6 were identified as target of semantic
meaning change between the two time periods.

Corpus Creation The “L’Unità” diachronic corpus [14] is a collection of
documents extracted from the digital archive of the newspaper “L’Unità”.17

For the task, the corpus has been initially split into two sub-corpora, C1, cor-
responding to the time period T1 = [1945 − 1970], and C2, corresponding to
the time period T2 = [1990− 2014].
To facilitate participants in the closed-task formulation, the corpora were pro-
vided in a pre-processed format. In particular, we adopted a tab separated
format, with one token per line. For each token, we provided its correspond-
ing part-of-speech and lemma. Sentences are separated by empty lines. Data
were pre-processed with UDPipe18 using the ISDT-UD v2.5 model.
Participants are free to combine the available information as they want. Fur-
thermore, to facilitate the generation of word embeddings, we made avail-
able a script for generating a format containing one sentence per line.
The whole “L’Unità” diachronic corpus has been built, cleaned and anno-
tated automatically. This process consisted of several steps, namely:

Step 1: Downloading All PDF files are downloaded from the source site
and stored into a folder structure that mimics the publication year of each
article.

Step 2: Text extraction The text is extracted from the PDF files by using the
Apache Tika library.19 First, the library tries to extract the embedded text if
present in the PDF. If this process fails, the internal OCR system is used. It is
important to notice that during this step several OCR errors may occur due
to different reasons. The processing of the early years of publications, i.e., be-
tween 1945–1948, represented a non trivial challenge for the extraction of the

17https://archivio.unita.news/
18http://lindat.mff.cuni.cz/services/udpipe/run.php
19https://tika.apache.org/

https://archivio.unita.news/
http://lindat.mff.cuni.cz/services/udpipe/run.php
https://tika.apache.org/
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textual data. In particular, we noticed that the page format had a major im-
pact on the quality of the OCR. In these period, the newspaper has quite an
unconventional format where a few large pages contain many articles scat-
tered into several columns. This affected the performance of the OCR due to
its failure in properly identifying the column boundaries.

Step 3: Cleaning In this step, we try to fix some text extraction issues. We
identified two lines of actions, the first dealing with paragraph splits and
the second with noisy text. In the text extraction process, paragraphs are
separated by means of an empty line. However, word hyphenation can trig-
ger errors in the paragraph segmentation phase by wrongly adding empty
lines. We addressed this issue by reconstructing the paragraph on a single
text line, thus ensuring that empty lines are only used to delimit the actual
paragraphs. In our case, noisy text corresponds to tokens whose composing
characters are wrongly interpreted by the OCR mixing together alphabetical
characters with numbers or symbols. Two heuristics were implemented to
limit the amount of noisy text. The first heuristic requires that paragraphs
must contain at least five tokens composed by only alphabetical characters.
The second heuristic requires that at least 60% of each paragraph must con-
tain words that are attested in a dictionary. For this, we did not use a ref-
erence dictionary, but we automatically created it by extracting tokens from
the Paisà corpus [140]. Numbers were excluded and only alphabetical strings
were retained. The output of the cleaning process is a plain text file for each
year where each paragraph is separated by an empty line.

Step 4: Processing All plain text files produced by the cleaning step are
processed by a Python script that splits each paragraph into sentences and
analyses each sentence with UDPipe 20 ISDT-UD v2.5 model. In this way, we
obtain tokens, part-of-speech tags, and lemmas. The processed data are then
stored in a vertical format as illustrated is Section 6.2.3.

After these preparation steps, the valid and retained data for the task span
over a temporal period between 1948 and 2014. We revised the initial split
of the two sub-corpora as follows: C1 ranges between T1 = [1948 − 1970],
and C2 between T2 = [1990 − 2014]. Table 6.4 illustrates the distributions of
the tokens across the two time periods for the sub-corpora. The difference in
the number of tokens between C1 and C2 reflects differences in the trends in

20http://lindat.mff.cuni.cz/services/udpipe/run.php

http://lindat.mff.cuni.cz/services/udpipe/run.php
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the number of daily published articles, due to cheaper printing costs and the
availability of new technologies such as the World Wide Web.

Corpus Period #Tokens
L’Unità 1948-1970 52,287,734
L’Unità 1990-2014 196,539,403

TABLE 6.4: Official Training Corpora: Occurrence of Tokens.

Creation of the Gold Standard The selection of the target words that com-
pose the Gold Standard data required a manual annotation. Identifying
words that have undergone a semantic change is not an easy task. To boost
the identification of candidate target words, we adopted a semi-automatic
method. In the following paragraphs we illustrate in detail our approach.

Step 1: Selection of candidate words. The initial selection of potential can-
didate words was based on Kronos-IT [13]. Kronos-IT is a dataset for
the evaluation of semantic change point detection algorithms for the
Italian language automatically built by using a web scraping strategy.
In particular, it exploits the information presents on the online dictio-
nary “Sabatini Colletti”21 to create a pool of words that have undergone
a semantic change. In the dictionary, some lemmas are tagged with the
year of the first attestation of its sense. In some cases, associated with
the lemma there are multiple years attesting the introduction of new
senses for that word. Kronos-IT uses this information to identify the
set of semantic changing words. We retained those words that were
predicted to have changed their meaning after 1970, so as to match the
temporal periods of the sub-corpora. In this way, we obtained 106 can-
didate lemmas.

Step 2: Filtering candidate targets. A challenging issue is the attestation of
the potential candidate words in both sub-corpora with a relatively
high number of occurrences to account for different contexts of use.
Frequency, indeed, plays a quite relevant role for the task: infrequent
tokens must be discarded because they affect the quality of word repre-
sentations.The initial list of candidate targets has been further cleaned
by removing all tokens that occur less than 20 times in each corpora.
. Moreover, we conducted a further analysis by manually inspecting
some randomly sampled lemma contexts. The aim of this analysis was

21https://dizionari.corriere.it/dizionario_italiano/

https://dizionari.corriere.it/dizionario_italiano/
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to remove targets for which the lemmas occurrences are affected by
OCR errors. This analysis was performed by the means of the Sketch
Engine22, in particular we analyze concordances of the target word in
order to discover OCR errors. One of such words was “toro” derived
from the mistaken OCR of “loro”. At the end of this process, we ob-
tained a list of 27 candidate targets for the annotation.

Step 3: Manual Annotation. For each target, we randomly extracted up to
100 sentences from each of the sub-corpus23. Each sentence was then
annotated by two annotators: they were asked to assign each occur-
rence to one of the meaning of the lemma according to those reported
in the Sabatini-Coletti dictionary. In case the meaning of the word in a
sentence was not present in the list of senses reported in the reference
dictionary, the annotators were allowed to add the sense to the word.
In total, we annotated 2,336 occurrences of the candidate target words.

Step 4: Annotation check. All cases of disagreement were collectively dis-
cussed among all of the annotators to reach a final decision. We ob-
served that some disagreements were also due to a biased interpreta-
tion of the context of occurrence by one of the annotators. These cases
mainly concerned short ambiguous sentences that prevented a clear
identification of the word meaning. As a result of this step, a few can-
didates were removed from the pool of candidates because occurring
in too ambiguous context.

Step 5: Creation of the gold standard. We retained as valid instances of lex-
ical semantic change all those targets that had occurrences of one spe-
cific sense only in T2, and never in T1. In other words, in the context
of this task, a valid lexical semantic change corresponds to the acquisi-
tion of a new meaning by a target word. Out of the 23 candidate target
words, only 6 of them show a semantic change in T2. All the other tar-
gets did not show a diachronic meaning change. In the final Gold Stan-
dard, we kept 12 candidate target words that did not change meaning
obtaining a final set of 18 target words.

The Gold Standard contains 18 targets listed as lemmas, one lemma per line,
with an accompanying label to mark whether the lemmas has undergone

22https://www.sketchengine.eu/
23This means that in case a target words occurs less than 100 times, all occurrences were

annotated.

https://www.sketchengine.eu/
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semantic change (label 1) or not (label 0). Participants were given a file con-
taining the 18 target lemmas, one per each line, without annotation. The
expected system output is a modification of this file where the participant
had to annotate each target lemma with the system prediction (0 or 1).

6.2.4 Evaluation

The task is formulated as a binary classification problem. Systems predic-
tions are evaluated against the change labels annotated in the Gold Standard
by using accuracy.
The test set (G) contains both positive (P ) and negative (N ) examples, i.e.
G = P ∪N . For example:

P = {pilotato, lucciola, ape, rampante}

N = {brama, processare}

Negative words are those that did not undergo a change in their meaning.
Systems’ predictions involve both positive and negative classified targets
Pr = Prpos ∪ Prneg. Then, true positives (positive targets classified as posi-
tive) are TP = P ∩ Prpos, true negatives (negative targets classified as nega-
tive) are TN = N ∩ Prneg, false negatives (positive targets classified as neg-
ative) are FN = P ∩ Prneg and false positives (negative targets classified as
positive) are FP = N ∩ Prpos.
We can then compute the accuracy as:

Accuracy =
TP + TN

TP + TN + FP + FN

Baselines

We provided two baseline models:

• Frequencies: The absolute value of the difference between the word
frequencies in the two sub-corpora;

• Collocations: For each word, we build two vector representations con-
sisting of the Bag-of-Collocations related to the two different time pe-
riods (T0 and T1). Then, we compute the cosine similarity between the
two BoCs. It is the same approach evaluated in [13].

In both baselines, we use a threshold to predict if the word has changed its
meaning. While for the frequencies, a change is detected when the difference
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is higher than the average. For the collocations a semantic change occurs
when the similarity between the two time periods drops under the average
plus the variance. Both the average and the variance are computed on the set
of target words.

System Type
OP-IMS Post-alignement
UWB Team Post-alignement
CIC-NLP PoS tag features
UNIMIB Jointly alignment
QMUL-SDS Jointly alignment
VI-IMS Jointly alignment
CL-IMS Contextual Embed-

dings
unipd Contextual Embed-

dings
SBM-IMS Graph

TABLE 6.5: Systems types.
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FIGURE 6.5: Number of false positives and false negatives for
each system.

6.2.5 Systems

21 teams registered to the DIACR-Ita task. However, 9 teams participated
in the final task for a total of 36 submitted runs. Based on the algorithms
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employed, we can group systems into four categories: Post-alignment, Joint
Alignment, Contextual Embeddings, Graph-based and PoS tag features (see
Table 6.5). The first two classes are characterised by the type of alignment
used. Post-alignment systems first train static word embeddings for each
time periods, and then align them. Joint Alignment systems train word
embeddings and jointly align vectors across all time slices. Contextual Em-
beddings systems use contextualized embeddings, such as BERT [59]; while
Graph-based systems rely on graph algorithms. PoS tag features system rely
on the distribution of targets PoS tags across the two time periods. The ma-
jority of participating systems use cosine distance as a measure of semantic
change, i.e. compute the cosine distance between the vectors of the target
lemmas among time periods. Other systems use the Average Pairwise Co-
sine Distance or the Average Canberra Distance, since the cosine distance
does not fit contextual embeddings representations. The last group of sys-
tems uses graph-based measures.
We report a short description of each team (best submission) as follows:

OP-IMS [102] This team uses Skipgram model with Negative sampling
(SGNS) to compute word embeddings, the resulting matrices are mean-
centred. Word embeddings are aligned using Orthogonal Procrustes.
They choose cosine similarity to compare vectors of different word
spaces and a threshold based on mean and standard deviation to clas-
sify target words.

UWB Team [174] The team maps semantic spaces using linear transforma-
tions, such as Canonical Correlation Analysis and Orthogonal Transfor-
mation and cosine similarity as a measure to decide if a target word is
stable or not. They use a threshold based on mean.

CIC-NLP [6] This team analyses the Part-Of-Speech distribution over the
two corpora and create vectors with information about the most com-
mon word POS-tags. Then, they obtain a score using pairs of vectors of
the two time periods and the sum of Euclidean, Manhattan and cosine
distance. They rank targets in discerning order. Finally, they label first
upper-third targets as changed words.

UNIMIB [22] The team creates temporal word embeddings using Temporal
Word Embeddings with a Compass (TWEC) [38]. They use the move
measure, i.e. a weighted linear combination of the cosine and Local
Neighbors, introduced by [86]. They label targets as stable if the move
measure is greater than 0.7.
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QMUL-SDS [5] The team uses TWEC [38] to compute temporal word em-
beddings with TWEC C-BoW model (Continuous Bag of Words) de-
fault settings. They use a cosine similarity as measure of change and a
threshold based on mean.

VI-IMS The team uses SGNS to create word embeddings exploiting Vector
Initialization [108]. They use cosine distance as a measure of semantic
change and a threshold based on the mean and the standard deviation
to classify targets words.

CL-IMS [122] The team creates word vectors using different combinations
of the first and last four layers of BERT. They rank targets according
to Average Pairwise Cosine Distance, and label the first 7 targets as
changed words.

unipd [24] This team uses contextualised word embeddings and an linear
combination of distances metrics to measure semantic change, namely
Euclidean Distance, Average Canberra distance, Hausdorff distance,
as well as Jensen–Shannon divergence between cluster distributions.
They rank targets according to the score obtained, and label the first
half as changed words.

SBM-IMS The team compute token vectors using BERT. They create a graph
where the vertices are the vectors extracted from BERT, while the edges
are the cosine distance between word vectors. They cluster the graph
with Weighted Stochastic Block Model. Then, they consider the number
of incoming edges from the first and second period as a measure of
semantic change.

6.2.6 Results

Table 6.6 reports the final results. The best result has been achieved by two
systems: OP-IMS and UWB-Team. Both systems exploit post-alignment strat-
egy. The second system CIC-NLP uses an approach based on PoS tag fea-
tures. QMUL-SDS and VI-IMS are based on joint alignment, while unipd and
SBM-IMS use contextual embeddings. The last system SBM-IMS is the only
graph-based approach. Moreover, we report both false negative and false
positives in Figure 6.5. Both post-alignment systems share the same unique
false negative: the target “tac”, while CIC-NLP detects two false positives.
Joint-alignment systems have a number of false positives higher or at least
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Team Accuracy
OP-IMS 0.944
UWB Team 0.944
CIC-NLP 0.889
UNIMIB 0.833
QMUL-SDS 0.833
VI-IMS 0.778
CL-IMS 0.722
unipd 0.667
SBM-IMS 0.611
baseline-collocations 0.611
baseline-frequencies 0.500

TABLE 6.6: Results.

equal to the number of false negatives. CL-IMS and unipd produce respec-
tively 2 and 3 false negatives and both misclassify three stable words. The
only graph-based approach, SBM-IMS, reports the highest number of false
positives. In conclusion, the results show that systems based on post/joint
alignment and PoS tag features achieve the best performance, while contex-
tual embeddings do not perform as good in this type of task. However all
the systems outperform both the baselines.
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Lexical Semantic Change Detection

7.1 XL-LEXEME: WiC Pretrained Model for Cross-

Lingual LEXical sEMantic changE

The LSC Detection task implicitly aims to disambiguate synchronic word
sense occurrences and then find differences in the word sense frequencies
in different periods. Word Sense Disambiguation (WSD) is a long-studied
task in Natural Language Processing [163], which consists of associating the
correct sense to a word occurring in a specific context. WSD involves some
crucial issues, such as relying on a fixed sense inventory. Fixed sense inven-
tories ignore the diachronic aspect of language because they can miss older
unused senses or be outdated and missing new senses.
The Word in Context task (WiC) [172] aims to overcome these issues. In this
work, we train a model on the WiC task and then use it to perform LSC De-
tection. In the WiC task, given the word w and two different contexts C1,
C2, the systems have to determine whether the meaning of w is the same in
the two contexts or not. Our approach is grounded on the assumption that
models trained on the WiC tasks are robust enough to transfer the knowl-
edge learned in a synchronic setting to a diachronic one. We summarise
the main contribution of this work as follows: (i) We propose a pre-trained
bi-encoder model, called XL-LEXEME, on a large-scale dataset for the WiC
task, which allows us to obtain comparable lexical-based representations; (ii)
We assert the effectiveness of XL-LEXEME despite the computational limita-
tion compared to the cross-encoder architecture for the LSC Detection task;
(iii) Experiments on the LSC Detection task show that XL-LEXEME outper-
forms state-of-the-art LSC Detection models for English, German, Swedish,
and Russian.
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7.1.1 XL-LEXEME

Generally, for pairwise sentence similarity tasks, BERT models use a cross-
encoder, in which the pairwise sequences are jointly encoded, and the overall
vectors are used for the classification. However, in several tasks, the cross-
encoder is not suitable since it cannot provide a distinct meaningful repre-
sentation for each sentence. An approach to overcome this issue involves
pooling the BERT output encoded vectors, which often results in worse per-
formance. Sentence-BERT (SBERT) [183] overcomes the limitation of cross-
encoders using a Siamese Network, i.e., the weights of the underlying net-
works are shared. SBERT encodes the two sequences separately in the BERT
model exploiting the Siamese architecture. The sequence-level representa-
tion is obtained by averaging the output encoded vectors, which are directly
compared using similarity measures such as cosine similarity.
Meanwhile, cross-encoders perform better since they are trained to profit
from the attention over the whole input. In this work, we introduce XL-
LEXEME1 which mirrors models for pairwise sequence similarity tasks and
adapts them to the WiC task, giving prominence to the target word, i.e. the
word for which we want to detect the LSC. The model takes as input two
sequences s1 and s2. The sequences are tokenized using subwords tokenizer,
such as Sentence Piece [112], and the special tokens <t> and </t> are used as
target word delimiters [235]:

s1 = w1, ...,<t>, wt
i , ..., w

t
i+k,</t>, ..., wN

s2 = w1, ...,<t>, wt
j, ..., w

t
j+p,</t>, ..., wM

(7.1)

where N and M represent the number of subwords of the sequence s1 and
s2 respectively, while wt

i , ..., w
t
i+k and wt

j, ..., w
t
j+p are the subwords of the tar-

get words. In the following, we describe the baseline cross-encoder and XL-
LEXEME based on a bi-encoder. For the cross-encoder, the two input se-
quences are concatenated by the special token [SEP ] in an overall sequence
s = [CLS] s1 [SEP ] s2 [SEP ]. If the length of s, i.e. N + M + 3, is greater
than the maximum sequence length λ, then the sequence s is cut such that
the length of s1 and s2 is less than λ∗ = λ−3

2
. To comply with the maximum

length, the left and right contexts of the sequence are truncated. For instance,

1The XL-LEXEME code is available on GitHub https://github.com/pierluigic/
xl-lexeme. The XL-LEXEME model is available in the Hugging Face Model Hub https:
//huggingface.co/pierluigic/xl-lexeme.

https://github.com/pierluigic/xl-lexeme
https://github.com/pierluigic/xl-lexeme
https://huggingface.co/pierluigic/xl-lexeme
https://huggingface.co/pierluigic/xl-lexeme
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s1 is truncated as follows:

s1 = wn0 , ...,<t>, wt
i , ..., w

t
i+k,</t>, ..., wn1 (7.2)

where n0 = max(0, i − 1 − λ∗−k−2
2

) and n1 = min(N, i + k + 1 + λ∗−k−2
2

). The
truncated sequence has a length γ < λ. The encoded representations of each
subword (v1, v2, ..., vγ) are summed to get the encoded representation of the
overall sequence, i.e. senc =

∑γ
i vi. Finally, the vector senc is used to compute

the logits:
logit = log σ(Wsenc) (7.3)

where W ∈ IR1×d. The model is trained to minimize the Binary Cross-entropy
loss function.
XL-LEXEME is a bi-encoder that encodes the input sequences using a
Siamese Network into two different vector representations. Each sequence is
tokenized and truncated according to the maximum length λ∗, using Equa-
tion (7.2). We thus obtain the new lengths γ1, γ2. The vector representa-
tion is computed as the sum of the encoded subwords (v1, v2, ..., vγ), i.e.
senc1 =

∑γ1
i vi and senc2 =

∑γ2
j vj .

XL-LEXEME is trained to minimize the Contrastive loss [84]:

ℓ =
1

2

[
y · δ2 + (1− y) ·max(0,m− δ)2

]
(7.4)

where we adopt a margin m = 0.5. We use as default distance δ the co-
sine distance between the encoded representations of s1 and s2, i.e. δ =

cos(senc1 , senc2 ). The main advantage of XL-LEXEME concerning models based
on the cross-encoder architecture is efficiency. The time cost can be directly
derived from the different architectures that exploit XL-LEXEME and the
cross-encoder baseline. The self-attention time complexity O(N2∗d) depends
on the vector dimension d and the sequence length, which is N for the cross-
encoder and N

2
for XL-LEXEME. For XL-LEXEME, the time complexity is

reduced to O((N
2
)2 ∗ 2d).

7.1.2 Experimental setting

Training details

XL-LEXEME and the cross-encoder are trained using XLM-RoBERTa (XLM-
R) [51] large as the underlying Language Model2 and using an NVIDIA

2The XLM-R model is fine-tuned during the training.
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GeForce RTX 3090. As for training data, the model uses the training data of
MCL-WiC [144], AM2ICO [137], and XL-WiC datasets [181] merged with the
randomly sampled 75% of the respective development data of each dataset.
The remaining 25% of the development data is used to fine-tune hyper-
parameters. Moreover, we augment training data for the cross-encoder by
swapping the order of sentences in the training set [144].
We use AdamW optimizer and linear learning warm-up over the 10% of
training data. We perform a grid search for the hyper-parameters opti-
mization, tuning the learning rate in {1e-6, 2e-6, 5e-6, 1e-5, 2e-5} and the
weight decay {0.0, 0.01}. Table A.1 (Appendix A.1) shows the selected hyper-
parameters. We sample 200 sentences containing the target word for each
language and each period. The sampling is repeated ten times, and the re-
sults are averaged over the ten iterations. We use the same methodology of
Rachinskiy and Arefyev [178] for sampling sentences from the RuShiftEval
corpora. We sample sentences in which we find the exact match with the tar-
get words with no pre-processing of the SemEval dataset. The LSC score is
computed as the average distance between the vectors over the two different
periods:

LSC(st0 , st1) =
1

N ·M

N∑
i=0

M∑
j=0

δ(st0i , s
t1
j ) (7.5)

where δ is the distance measure, i.e. δ = 1−log σ(Wsenc) for the cross-encoder
baseline and δ = cos(senc1 , senc2 ) for XL-LEXEME.

SemEval-2020 Task 1 Subtask 2 Leaderboard Temporal BERT cross-encoder XL-LEXEMELang. UG_Student
_Intern

Jiaxin
&
Jinan

cs2020 UWB Count
baseline

Freq.
baseline

TempoBERT Temporal
Attention

EN 0.422 0.325 0.375 0.367 0.022 -0.217 0.467 †0.520 †0.752 0.757
DE 0.725 0.717 0.702 0.697 0.216 0.014 - †0.763 †0.837 0.877
SV †0.547 †0.588 †0.536 †0.604 -0.022 -0.150 - - †0.680 0.754
LA 0.412 0.440 0.399 0.254 0.359 †0.020 0.512 0.565 †0.016 -0.056

Avg. 0.527 0.518 0.503 0.481 0.144 -0.083 - - 0.571 0.583

TABLE 7.1: Results (Spearman correlation) on the SemEval-
2020 Task 1 Subtask 2 test set. The symbol † indicates there
is no statistical difference with the correlation obtained by XL-

LEXEME.

7.1.3 Results

Table 7.1 and Table 7.2 report the results on the SemEval-2020 Task 1 Sub-
task 2 and the results on the RuShiftEval test set. The results of the best
systems are in bold. XL-LEXEME achieves the best score for English, Ger-
man, Swedish, RuShiftEval1, RuShiftEval2, and RuShiftEval3. XL-LEXEME
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RuShiftEval Leaderboard cross-encoder XL-LEXEME XL-LEXEME (Fine-tuned)Dataset GlossReader DeepMistake UWB Baseline
RuShiftEval1 †0.781 †0.798 0.362 0.314 †0.727 0.775 0.799
RuShiftEval2 †0.803 †0.773 0.354 0.302 †0.753 0.822 0.833
RuShiftEval3 †0.822 †0.803 0.533 0.381 †0.748 0.809 0.842

Avg. 0.802 0.791 0.417 0.332 0.743 0.802 0.825

TABLE 7.2: Results (Spearman correlation) on the RuShiftEval
test set. The symbol † indicates there is no statistical difference

with the correlation obtained by XL-LEXEME.

achieves a strong Spearman correlation for English and Swedish languages
and a solid correlation on the German dataset, obtaining a significative cor-
relation (p < 0.001). XL-LEXEME obtains no significant results in the Latin
language since the predicted scores for the target words are not correlated
with the test set. Latin is underrepresented in the training data of XLM-R,
and there are no similar languages in the WiC dataset that we use for training
XL-LEXEME. Moreover, the Latin dataset is more challenging as it involves
the first corpus written in ancient Latin, which differs in many aspects from
modern Latin. For this reason, XL-LEXEME could be ineffective in ancient
languages and, in general, in languages that are not widely covered by the
WiC dataset.
We report the statistical significance of the difference between the perfor-
mance of XL-LEXEME concerning the other models. The statistical signif-
icance of the difference is computed using Fisher’s z-transformation [176].
XL-LEXEME obtains stronger correlations than the cross-encoder, but the dif-
ferences are not significant. The correlations obtained on the English and the
German datasets are significantly different (p < 0.05) for all the systems that
participated in the SemEval-2020 Task 1 but not for TempoBERT and Tempo-
ral Attention. On the other side, TempoBERT and Temporal Attention obtain
a Spearman correlation on English and German that is not statistically differ-
ent from the systems on the SemEval-2020 Task 1 leaderboard. In the Swedish
language, XL-LEXEME is the only one obtaining a significantly different cor-
relation from the Count baseline results. XL-LEXEME showed its effective-
ness also in Swedish, although the WiC dataset does not cover this language.
Presumably, Swedish benefits from the presence of other languages descend-
ing from the Old Norse language, namely Danish and Norwegian.
XL-LEXEME obtains competitive results for the Russian language in the
RuShiftEval leaderboard. Contrary to XL-LEXEME, Deep Mistake and Gloss
Reader are fine-tuned on the RuSemShift dataset. The differences between
XL-LEXEME and the best two systems in the leaderboard are not statically
significant. Moreover, in Table 7.2, the results of XL-LEXEME fine-tuned on
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the RuSemShift are shown. Although the fine-tuned model achieves the best
correlation scores in the three datasets, the difference between DeepMistake
and GlossReader is not significant.

7.1.4 Conclusion

XL-LEXEME is pre-trained on a large WiC dataset to mirror sentence-level
encoders focusing on specific words in contexts. We evaluated XL-LEXEME
on two Lexical Semantic Change Detection datasets: SemEval-2020 Task 1
and RuShiftEval. XL-LEXEME outperforms state-of-the-art models for LSC
Detection in English, German, Swedish, and Russian datasets, with signifi-
cant differences from the baselines. The XL-LEXEME effectiveness and effi-
ciency make it reliable for LSC Detection on large diachronic corpora.

7.1.5 Limitations

While the vector representations obtained using XL-LEXEME for different
languages are potentially comparable, lying on the same geometric space, the
evaluation of cross-lingual semantic changes cannot be performed for lacking
cross-lingual LSC Detection resources. SemEval 2020 Task 1 datasets consist
of small sets of target words, i.e., the number of target words for English,
German, Latin, and Swedish is 37, 48, 40, and 31, respectively. The example
of the Latin language highlights that XL-LEXEME can perform poorly on
languages that are underrepresented in the training set of XLM-R and not
covered by the WiC dataset. Generally, at the moment is not possible to state
precisely how and how much XL-LEXEME performance is affected by the
language distribution in the XLM-R training set and the WiC dataset.

7.2 Tug of War: Studying the

Contextualisation of Pre-trained BERT models

The major novelty and advancement that contextualised BERT models have
brought to language modelling is the ability to dynamically generate vector
representations based on specific usage context: we can thus easily differen-
tiate between sitting on a rock and listening to rock.
While BERT models are pre-trained on huge all-purpose corpora, typically
with a large emphasis on web corpora, researchers and practitioners employ
them for diverse text applications. Regardless of how well the information



7.2. Tug of War: Studying the
Contextualisation of Pre-trained BERT models

111

and language in the studied text align with the pre-training text, the mod-
els are used to generate word vector representations (i.e. embeddings) for
any input sequence. However, this implies a gap between where the models
have learned all of their parameters, and the data on which they are applied.
Indeed, BERT models serve as the lens through which we view the studied
texts: if our texts are contemporary with the pre-training, the gap is likely to
be minimal; if, however, we intend to study historical or other out-of-domain
(OOD) corpora, this gap can be arbitrarily large and have major effects on
follow-up studies.
The effects can be exemplified in the area of Lexical Semantic Change (LSC)
where the state of the art postulates a standard recipe: a word is modelled by
its contextualised embeddings for different time periods [161]. These repre-
sentations are then compared over time to detect change. However, if BERT
models impose too much pre-trained contemporary knowledge in a histor-
ical context, they are unable to generate accurate representations of the his-
torical meaning of a word. For instance, the historical expression sit at meat
denotes taking a seat at the dining table or joining others for a meal3, as
meat originally referred to “any kind of food”. Over time, the term under-
went semantic narrowing and now typically refers to animal flesh used as
food. Models relying heavily on contemporary pre-trained knowledge may
not faithfully capture the authentic historical meaning of “meat”. This could
result in an underestimation of semantic change. Similar effects may arise
when studying language variation across speaker communities or in out-of-
domain contexts, such as detecting hate speech [164], radicalization [197],
and dog whistles [56]. By studying the degree of influence that the model ex-
erts versus the context, we can offset this in subsequent modelling, and build
more contextualised models.
Some previous exploration of the contextualisation has been done, typically
through probing tasks [98], or by analysing the geometry of the vector repre-
sentations [64]. We investigate to what degree the representation of a target
word is determined by BERT’s pre-trained knowledge and contra the context
in which it appears by analysing the effect of substituting a target word with

3An example is the passage from the King James Bible (Luke 14:10): “But when thou art
bidden, go and sit down in the lowest room; that when he that bade thee cometh, he may
say unto thee, Friend, go up higher: then shalt thou have worship in the presence of them
that sit at meat with thee.”
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a replacement word and studying the impact on the corresponding contextu-
alised representations.4

Our contributions:
• Using a replacement schema, we analyse how the “tug of war” between

the context and BERT’s pre-trained knowledge affects the contextuali-
sation. We find that the degree of BERT’s contextualisation is not fixed
but depends on the linguistic relations between the words, thereby re-
flecting the model’s sensitivity to these linguistic features. We estab-
lish that contextualisation changes as a function of semantic related-
ness which we systematically test across different linguistic relations,
namely synonymy, antonymy, and hypernymy.

• We investigate BERT’s contextualisation across different PoS classes
and find that they are affected differently. We validate these findings
through the Word-in-Context (WiC) task, revealing discrepancies be-
tween verbs and nouns. This implies that assessments for tasks like
WiC should be tailored to different PoS to provide a more comprehen-
sive evaluation, thereby enhancing the robustness of BERT models.

• We challenge the use of BERT embeddings to capture semantic changes
involving meanings beyond the pre-trained knowledge of BERT. We
demonstrate that approaches relying on the clustering of BERT embed-
dings fall short in capturing semantic changes, as they struggle to cor-
rectly contextualise untuned word meanings.

• We propose a new interpretable approach to Lexical Semantic Change
(LSC) by leveraging contextualised BERT embeddings. Our approach
leverage lexical replacements and outperforms existing state-of-the-art
(SOTA) achieving the top score for English.

7.2.1 Related Work

BERT-like models leverage the Transformer encoder to capture the semantics
of words [59, 228]. Their success in solving NLP tasks has prompted numer-
ous studies to explore the nature and characteristics of their contextualised
architectures. Ethayarajh [64], Coenen et al. [50], Cai et al. [37], and Jawahar,
Sagot, and Seddah [98] shed light on the geometry of the embedding space.
Serrano and Smith [208], Bai et al. [10], and Guan et al. [81] investigate the

4To reduce the amount of free variables, like spelling variations and OCR errors, in this
study, we focus on modern texts and will verify our findings on historical texts in future
work.
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interpretability of the attention mechanism. Yenicelik, Schmidt, and Kilcher
[237], Garí Soler and Apidianaki [75], Kalinowski and An [103], and Haber
and Poesio [83] examine the clusterability of word representations. Abdou
et al. [1], Hessel and Schofield [90], Mickus et al. [156], and Wang et al. [232]
analyse the impact of word position in the embeddings generation. Coenen
et al. [50], Levine et al. [129], and Pedinotti and Lenci [168] study how word
meaning are represented in the embedding space.
Most of the current work involves probing tasks, as proposed by Hewitt
and Liang [91]. These tasks consist of training an auxiliary classifier on top
of a model, where the contextualised embeddings serve as features to pre-
dict syntactic (e.g. PoS) and semantic (e.g. word relations) properties of
words [49, 135, 231, 135, 182]. If the auxiliary classifier accurately predicts
a linguistic property, the property is assumed to be encoded in the model.
Our work extends previous work that focus on the contextualisation of BERT-
like models. Instead of using probing tasks, we leverage a replacement
schema according to PoS and semantic categories with graded lexical related-
ness. Like Ethayarajh [64] and Jawahar, Sagot, and Seddah [98], we analyse
the contextualisation across all layers of BERT. Building on the work of Zhao
et al. [241], our research focuses on the degree of contextualisation. However,
while they assess the inference of semantic word classes from contextualised
embeddings, we analyze the contextualisation of different PoS that models
exert under LSC and for OOD words.

7.2.2 Methodology

In our experiments, we leverage a replacement schema to investigate the pre-
trained contextualisation of BERT. This involves analyzing the variations in
embedding representations when a target replacement is introduced.5 For in-
stance, by replacing a target like cat with a replacement like chair in a specific
context like The <target/replacement> was purring loudly.

The replacement schema

We use WordNet to generate different classes of replacements for a specific
word [66], which correspond to a varying degree of plausibility (i.e. suitabil-
ity of a specific replacement) between the target word and its replacement.

5Given our primary focus on words and their replacements when these words are split
into multiple sub-words by the model, we calculate the average embeddings of the corre-
sponding sub-words. This approach ensures the preservation of the same number of tokens
in the original and artificial sentences and enables accurate distance calculations.
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Thus, we hypothesise that each class is associated with a different impacts on
contextualisation. Each class of replacements also has diachronic relevance,
as the synchronic, semantic relation can be considered to have a parallel in
semantic change [233]. To ensure accurate linguistic replacements, we main-
tain PoS agreement with the target words; that is, nouns are replaced with
nouns, and so forth.

• synonyms (e.g. sadness ← unhappiness) are used to evaluate the sta-
bility in contextualisation; that is, we hypothesise similar embeddings
between target and replacement words. Indeed, synonyms are consid-
ered equally likely alternatives in BERT’s pre-trained knowledge. On
the diachronic level, they emulate the absence of any semantic change
of the replacement word;

• antonyms (e.g. hot ← cold) are used to evaluate a light change in
contextualisation; that is, we hypothesise slightly less similar embed-
dings between target and replacement words. Indeed, antonyms are
sometimes equally plausible alternatives6 while other times are likely
to surprise the model7. On the diachronic level, they emulate the a con-
tronym change8 of the replacement word;

• hypernyms (e.g. bird ← animal) are used similarly to antonyms.
However, on the diachronic level, they emulate a broadening seman-
tic change of the replacement word;

• random words (e.g. sadness ← eld) are used to evaluate a change in
contextualisation. If BERT places high importance on the context, then
the replacement should receive a similar representation to the target
word. Otherwise, if BERT heavily relies on its pre-trained knowledge,
the replacement will exhibit dissimilarity to the target word despite the
identical context, as well as dissimilarity to the typical replacement rep-
resentations. On the diachronic level, random emulates the presence of
strong semantic change of the replacement word, that is the emergence
of a homonymic sense.

• syntheticwords (e.g. love← new-token) are used as a baseline to eval-
uate the contextualisation of word meanings regardless of pre-trained
knowledge. Indeed, we add a new token in the BERT’s pre-trained
vocabulary, and as such, it does not have any associated pre-trained

6For example: I love/hate you
7For example: I burned my tongue because the coffee was too hot/cold
8A contronym change occurs when a word’s new meaning is the opposite of its original

meaning (e.g. sanction in English)
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knowledge (i.e., untuned weights). We hypothesise very dissimilar em-
beddings between target and synthetic words. On the diachronic level,
this class mimics the adaptation to newly emerging concepts beyond
their specific training time frame or to new domains.

Data

To avoid introducing noise into our experiments resulting from the confla-
tion of senses, we replace words with contextually appropriate replacements
based on the intended sense of the word within a specific sentence (e.g, stone
and music for sitting on a rock and listening to rock, respectively). We therefore
leverage the SemCor dataset [159], still the largest and most commonly used
sense-annotated corpus for English. To select candidate replacements, we
consider different PoS tags, namely verbs, nouns, adjectives and adverbs, and
semantic classes, namely synonyms, hypernyms and antonyms. We randomly
sample a set of synsets for each PoS tag occurring in SemCor, and for a spe-
cific synset, we extract a subset of sentences where a word is annotated with
that synset. We sample a maximum of 10 sentences per synset to prevent
oversampling of high-frequency synsets. For each sentence, we generate the
synonym and antonym replacements for all PoS, and hypernym replacements
only for nouns and verbs9 (see Table 7.3).

PoS N. target words Avg. sampled senteces
per target word N. examples

noun 360 3.55 1277
verb 433 3.45 1494
adjective 393 3.39 1334
adverb 158 3.46 546

TABLE 7.3: Data statistics over PoS, sampled from SemCor.

Tug of War in BERT

We delve into the intricate dynamics of the tug of war that occurs within
the contextualisation of words by focusing on the word contextualisation,
and the use of replacements as a proxy for semantic change. In our exper-
iments, we utilise word embeddings generated by the monolingual BERT

9WordNet lacks hypernym information for other PoS
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base model10 due to its widespread usage. Additional analyses for XLM-R11

and mBERT12 are presented in appendix.

7.2.3 Word contextualisation

We analyse the word contextualisation by comparing the embeddings of a
word w in the original sentence to those in the same sentence when w is
replaced by r. To perform this comparison, we rely on the cosine distance
between the embeddings of w and r. We refer to this distance as the self-
embedding distance (SED), i.e.,

w−n ... w−1 w w+1 ... w+m

↕
w−n ... w−1 r w+1 ... w+m

where w−n, ..., w−1 and w+1, ..., w+m denotes the embeddings of n and m

neighbouring words to the left and right of the target word w, respectively.13

The higher the SED, the less BERT leverages context to contextualise words
but instead relies on pre-trained knowledge.

Self-embedding distance

For each pair of original and artificial sentences, we computed SED across
each layer. We then analysed the average SED for each class of replacement
and PoS at each BERT layer. To address the anisotropic nature of BERT’s
space14 and ensure comparability across layers, we normalise the average
SED score for each class of replacements with the average SED score obtained
with synthetic replacements. We report average SED scores in Figure 7.1.
Like Ethayarajh [64], we observe that the word contextualisation increases
across layers as the SED decreases. However, we find a similar degree of
contextualisation in the last layers of BERT, indeed the SED becomes some-
what stable for each class of replacements and PoS. Adverbs represents an
exceptional case, as the word contextualisation is less stable than other class
of replacements.

10bert-base-uncased
11xlm-roberta-base
12bert-base-multilingual-cased
13Given our primary focus on words and their replacements when these words are split

into multiple sub-words by the model, we calculate the average embeddings of the corre-
sponding sub-words. This approach ensures the preservation of the same number of tokens
in the original and synthetic sentences and enables accurate distance calculations.

14Embeddings occupy a narrow cone within the vector space [64].
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FIGURE 7.1: Average SED over layers.

For adverb, the synonyms and antonyms are closer than for other PoS,
while being, along with random, associated with lower SED; that is, ad-
verbs are more contextualised than other PoS and less pre-trained knowl-
edge is used for their representation. This is most likely because adverbs
in English are more context-dependent than the other PoS. Indeed, they can
modify verbs, adjectives, adverbs, and entire sentences, in contrast to adjec-
tives, which may only modify nouns and pronouns, and to verbs and nouns,
which constitute essential components of sentences. This finding is in line
with the work of Lorge and Pierrehumbert [139], which shows weak differen-
tiation amongst the semantic classes of adverbs.
For other PoS, the SED score for random is above 1.0 in all layers, leading us
to argue that BERT falls short in contextualising out-of-context words when
pre-trained knowledge is available. That is, the representation of a random
word does not mimic the representation of the target word that it replaces.
The context thus has minimal effect in determining the representation of the
replacement word.
For verb, we note a higher SED for antonyms, synonyms, and
hypernyms in comparison to other PoS. Additionally, there is a narrower
gap between the SED for random and the SED for antonyms, synonyms,

hypernyms. These observations suggest that the contextualisation of verbs
is less pronounced than that of other PoS and that the model relies more on
pre-trained knowledge. As a result, the embeddings of verbs exhibit greater
similarity to the embeddings of random words in context.
As for adjective and noun, we note that they exhibit similar contextualisa-
tion across layers. Additionally, for noun, hypernyms are less similar to the
target than antonyms and synonyms. This aligns with the recent findings
of Hanna and Mareček [87], suggesting that BERT’s understanding of noun
hypernyms is limited.
All in all, our results suggest that models exhibit varying degrees of contex-
tualisation for different PoS, with lower contextualisation observed for verbs.
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PoS contextualisation through WiC

To verify that the variations in contextualisation across PoS are not an artifact
of the replacement schema, we utilise Word-in-Context (WiC), a popular task
in NLP for which various benchmarks are available in different languages.
WiC is a recent task designed to assess the effectiveness of contextualised
embeddings in capturing word usages by determining whether a target word
w, occurring in a pair of sentences ⟨s1, s2⟩, has the same meaning or not [172].
PoS information is available for most WiC benchmarks but, thus far, existing
approaches to WiC have treated all PoS as a bundle. For our experiments, we
consider benchmarks for different languages: English (WiC-en [172], MCL-
WiC- [144]), French (MCL-WiC-fr [144]), Italian (XL-WiC-it [181], WiC-ITA-
it [44]), and German (DWUG-de [205])15. We split the WiC benchmarks into
distinct sub-corpora for nouns, verbs, and adjectives16. Details on the bench-
marks are available in Appendix B.3.
Following Pilehvar and Camacho-Collados [172], we tune a threshold-based
classifier on the development set (Dev) of each WiC benchmark, PoS, and
BERT layer, totaling 216 classifiers17. For each sentence pair available in a
Dev set, we computed the cosine similarity between the contextualised em-
beddings of the target word w extracted individually from a layer of a BERT
model18. The threshold for a classifier is determined by optimising the F1-
score over Dev and then applied to both the Train and Test sets. Instead of
using accuracy as an evaluation metric, we employ the F1-score to account
for the inherent class imbalance in these split benchmarks.
For the sake of brevity, we report in Table 7.4 results for classifiers based
on last layer embeddings. Additional and consistent results for each layers
are reported in Appendix B.3. According with the finding of Figure 7.1, we
find that BERT consistently performs better at distinguishing usages of nouns
than verbs, with adjectives falling in between.
As verbs are approximately twice as polysemous as nouns [134], we want to ex-
clude that WiC performance over PoS is not influenced varying levels of pol-
ysemy instead of the models’ contextualisation capability. We analysed the
polysemy distributions of target words for each PoS and benchmark, finding

15Although the benchmark for French and German provided by Raganato et al. [181] is
considerably larger, we have made the decision not to use them due to the presence of noisy
instances that could potentially impact our analysis negatively.

16We excluded adverbs due to the limited number of examples.
176 benchmarks, 3 PoS, 12 layers
18We use bert-base-uncased for English, dbmdz/bert-base-french-europeana-cased for French,

dbmdz/bert-base-french-italian-uncased for Italian, bert-german-cased for German. The models
are base versions of BERT with 12 attention layers and a hidden layer of size 768.
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WiC-en MCL-WiC-en XL-WiC-fr XL-WiC-it WiC-ITA-it DWUG-de
Train Test Train Test Train Test Train Test Train Test Train Test

nouns 0.691 0.683 0.796 0.847 - 0.677 0.678 0.689 0.682 0.759 0.808 0.799
verbs 0.615 0.611 0.752 0.805 - 0.622 0.639 0.593 0.459 0.615 0.630 0.640

adjectives - - 0.738 0.819 - 0.653 - - 0.733 0.695 - -
Acc. 0.638 0.840 0.787 0.726 Macro-F1 0.670 -

Reference Pilehvar and Camacho-Collados Martelli et al. Martelli et al. Raganato et al. Periti and Dubossarsky

TABLE 7.4: Scores obtained by threshold-based classifiers for
WiC trained on Dev sets. Results are provided for PoS and WiC
benchmarks, with the best result in each considered benchmark
and dataset highlighted in bold. The bottom rows show the
SOTA accuracy and corresponding reference reported for the

benchmark.

that a comparable degree of polysemy for each PoS in the considered WiC
benchmarks. This assessment involved checking the polysemy of each target
word in the various WiC benchmarks using Open Multilingual Wordnet, for
English, French, Italian [66], and Odenet for German [210]. See Appendix
B.4 for details. These results lead us to conclude that BERT exhibits varying
degree of contextualisation for different PoS.

Form-based and sense-based approaches

Approaches to LSC relying on contextualised word embeddings are typically
distinguished into two main categories: form-based approaches and sense-
based approaches [161]. The former captures semantic change by solely re-
lying on similarities among raw embeddings without depending on sense
disambiguation and representation. A common strategy involves aggregat-
ing all the embeddings of a word in C1 and C2 by averaging, and modeling
the change as the cosine similarity of the average representations (PRT) [145]
. The latter generally use clustering algorithm like Affinity Propagation to
identify senses and subsequently model the change as divergence of cluster
distributions (JSD) [146].
We argue that our findings in Section 7.2.3 has important implications on
these approaches when pre-trained models are used. Specifically, con-
sider semantic changes involving the acquisition or loss of new/old mean-
ings. When these semantic changes occurs, if BERT models lack pre-trained
knowledge of the involved meanings, they tend to position the correspond-
ing word embeddings instances far apart in the space from the other embed-
dings of the same word, regardless of the context in which the word occurs
(see random in Fig 7.1). While form-based approaches may still detect seman-
tic changes by identifying low-contextualised word occurrences, sense-based
approaches fall short in accurately detecting the same semantic changes. This
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is because they require modelling meanings outside the model’s pre-trained
knowledge before detecting those changes. Since these meanings cannot be
adequately modeled, given the model’s low degree of contextualisation, the
performance of sense-based approaches is reduced compared to that of form-
based approaches.
We further tested these implications in the LSC task by comparing PRT and
JSD on an artificial diachronic corpus spanning two time periods (see details
in Appendix B.5). Essentially, we introduced random replacements in C2

with varying probabilities to emulate different degrees of change for a set
of 46 target words. Subsequently, we compared the Spearman Correlation
between the scores obtained with PRT and JSD with the artificially graded
score of emulated semantic change. Results using BERT are presented in
Figure 7.2 (see Appendix B.5 for additional results). Our hypothesis is that
while PRT can accurately predict changes, JSD falls short because it can only
correctly model the meanings that BERT is already aware of.
As shown in the figure, we can accurately model artificial semantic changes,
even from layer 2, using PRT. This is not the case for JSD, where we ob-
serve statistically significant correlations for only a few layers. However,
the significance of performance for JSD is an artifact of BERT embeddings
and does not authentically represent the simulated change. We verify this
by examining the modelled clusters. While, in general, the number of clus-
ters of AP is large [146, 170], representing sense nodules19 rather than word
meanings [116], we find that the injected confusion in the model due to the
random replacements results in a very low number of clusters (typically 2,
maximum of 4). We report similar results in Appendix for other languages
(i.e. German, Swedish, Spanish)

Addressing LSC through replacements

We propose a novel supervised20 approach to Graded Change Detection
building upon the replacement schema. Our approach leverages a curated
set of word replacements from WordNet and Wiktionary.
We denote T = {w1, w2, ..., wN} as the set of target words. For each target
word, we extract a set of possible replacements ρ(wi) = {r1, r2, ..., rM}, re-
sulting in N ∗M replacement pairs. The set of replacements is obtained by
considering the lemmas of synonyms and hypernyms associated with the
target word wi in WordNet and words extracted from the Wiktionary page

19Lumps of meaning with greater stability under contextual changes [52]
20According to the classification framework presented by Montanelli and Periti [161]
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FIGURE 7.2: Spearman Correlation over layers for artificial se-
mantic change.

corresponding to the target word. For each target word wi, we sample up
to 200 sentences from each period that remain stable regardless of the re-
placement word rj . For each replacement pair (wi, rj), we denote the set of
sentences for a time period t ∈ {1, 2} as St(wi, rj).
For each sentence s ∈ St(wi, rj) we measure the self-embedding distance
of the target and replacement word and denote it sed(s). The average self-
embedding distance of a target-replacement pair is defined as

awdt(wi, rj) =
1

|St(wi, rj)|
∑

s∈St(wi,rj)

sed(s)

The absolute difference in awd over time is denoted TD(wi, rj). Finally, we
rank the replacements ρ(wi) according to their degree of time difference:

R(ρ(wi)) = {r1, r2, ..., rM | TD(wi, ri+1, ) ≤ TD(wi, ri)}

and we compute a semantic change score lscw as the average TD considering
the top k replacements:

lscw =
1

k

∑
r∈R(ρ(wi))k

TD(wi, r)

We evaluate our approach on the SemEval-2020 Task 1, Subtask 2 dataset for
English. We compute the Spearman Correlation between the graded score
reported in the gold truth and the lsc scores. Figure 7.3 reports the correla-
tion computed for different values of k. The highest correlation of 0.741 is
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FIGURE 7.3: Top-k replacement vs Spearman Correlation.

Model Spearman Correlation
Rosin and Radinsky 0.629

Kutuzov and Giulianelli 0.605
Laicher et al. 0.571
Periti et al. 0.512

Synonym
Replacement

Replacement Min. Corr. 0.600
Replacement Max. Corr. 0.741
Replacement Avg. Corr. 0.674

Random
Replacement

Replacement Min. Corr. 0.495
Replacement Max. Corr. 0.622
Replacement Avg. Corr. 0.542

TABLE 7.5: Spearman Correlation on SemEval-2020 Task 1
(Eng), where our results outperform current SoTA.

achieved when considering the first 22 replacements, while the lowest corre-
lation of 0.600 is obtained using only the first replacement (see Table 7.5). In-
terestingly, the minimum correlation obtained using the replacements is com-
petitive with SOTA results. Moreover, on average, the correlation is higher
than the SOTA model’s performance. The replacements are reported in Table
B.5. We used the linguistically-aware replacement strategy in the LSC task
to assess and quantify the semantic changes undergone by words over time.
By replacing the target words with different semantically related words, we
generate contextual variations that enable the detection of semantic shifts. In
the case of words like record and land that have undergone semantic change
through narrowing and generalisation, respectively, linguistically aware re-
placement scan provide valuable insights. The replacement process gener-
ates a list of replacements that can be used as labels for the types of semantic
change observed. By associating each replacement with a specific seman-
tic category or change type, it becomes possible to analyse and quantify the
semantic shifts experienced by words over time.
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Random replacements

In this section, we present results using randomly selected words with the
same Part of Speech (PoS) as the target word, i.e. random replacement as in-
troduced in Section 7.2.2. This approach generates a list of substitute words
contextually unrelated to the target word. Some interesting patterns emerge
when these results are compared with those obtained using synonym re-
placement. In the case of semantic change detection, the use of synonyms
can provide more contextually relevant replacements, as they share semantic
relationships with the target word. However, using random word replace-
ments can still yield reasonable results, as evidenced by an average correla-
tion of 0.542. These results is in line with the finding of Section 7.2.3.
In these approach, although random replacements tend to perform worse
than synonym replacements, they have one distinct advantage: they do not
rely on external lexical resources. This way, the approach is also suitable for
unsupervised scenarios. While synonym replacements can improve contex-
tualisation and semantic relevance, they are not always readily available or
reliable for languages with limited linguistic resources. In such cases, ran-
dom word replacements can still provide reasonable results and serve as a
practical and resource-efficient approach for tasks where synonym informa-
tion is scarce or unavailable.
In Section 7.2.3, by using SemCor, we effectively account for the nuances of
different word senses, thereby improving the contextualisation and semantic
relevance of synonym replacements. This approach is more targeted as syn-
onyms are selected based on their association with a particular sense, leading
to higher quality contextualisation in the context of that sense. As a result,
synonym replacements are more finely tuned to the specific meaning of the
target word, reducing noise and improving correlation with semantic change
labels.
The lower correlations observed with random replacements indicate that
contextualisation effects vary significantly when unrelated words are intro-
duced into the context. This emphasizes the crucial role of context in the
performance of language models when they have prior knowledge of input
word meanings. However, it should not be assumed that contextualisation
is equally effective when modeling new meanings outside the scope of the
model’s pre-trained knowledge.
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7.2.4 Conclusions

Ethayarajh’s work (2019), which was the first to study contextualisation in a
methodical way, has clearly set the stage for our fine-grained study of con-
textualisation. We extend this line of work by studying the “tug of war”
between BERT’s contextualisation and its pre-trained knowledge respect to
the area of LSC and OOD.
We analyse the degree of contextualisation using a replacement schema that
can be used for any pre-trained LLMs. We focus on BERT and find that con-
textualisation effects differ across PoS. We support this finding by splitting
up WiC datasets and find that the results are consistently better for nouns
than verbs, across several languages, an effect that cannot be attributed to
polysemy effects. We also conclude that the pre-training models significantly
influence the representation of a word, and BERT models are not capable of
capturing contextualised word meanings beyond their pre-training. Thus,
our results indicate that the low degree of contextualisation can have severe
limiting effects when pre-trained BERT models are applied to out-of-domain
text. We will further verify these findings using, for example, historical,
sense-tagged texts.
Using the same replacement schema, we demonstrate that form-based ap-
proaches are more suitable than sense-based approaches for detecting seman-
tic changes when pre-trained models are employed. Additionally, we pro-
pose a novel approach to LSC and are able to surpass the results achieved by
existing state-of-the-art models in the task of LSC. Our replacement schema
gives us an automatic way of providing labels for the change that has oc-
curred, offering us a way to do explainable semantic change detection. In
future work, we will use models that utilise the complete encoder-decoder
architecture, such as T5 [180], or exclusively the decoder architecture such as
GPT-like models [34], to generate replacement categories without relying on
existing resources like WordNet. We will also evaluate the degree of contex-
tualisation on these models.

Limitations

One potential limitation of our study lies in the use of the replacement
schema in conjunction with lexical replacements generated from WordNet.
As a matter of fact, inherent limitations of WordNet, such as potential gaps,
inaccuracies, or ambiguities in the semantic relationships may influence our
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analysis. WordNet also limits the data sources from which we can draw sen-
tences, since we need a corpus with sense annotations corresponding to a
lexicon.
Furthermore, in our experiment, the lexical replacement process involves
substituting a word occurrence in the original sentence with a related lemma
extracted from WordNet. As a result, providing the model with synthetic
sentences containing the lemma instead of the inflected word may influence
the generation of word embeddings and the contextualisation of every word
in the sentences. However, we assume that this limitation equally affects ev-
ery class we consider. For example, while the lemma of a verb may reduce
the third singular verb form, the plural forms of adjectives and nouns can
also be simplified to singular lemma forms. Additionally, to mitigate these
issues and ensure that all PoS are equally affected by the replacement proce-
dure, we replaced both the target and replacement words with lemmas in the
original and synthetic sentences, respectively.
Finding the correct form of a replacement requires advanced morphological
analysis and carries the risk of leading to errors. For now, we therefore opted
to circumvent this by replacing targets and lemmas alike. Furthermore, we
would like to highlight a relevant study by [123] that delves into the influence
of various linguistic variables on the use of BERT embeddings for the LSC
task. This research demonstrates that by reducing the influence of orthogra-
phy through lemma usage, significant enhancements in BERT’s performance
were observed for German and Swedish, while maintaining comparable re-
sults for English. This underscores the potential benefits of lemma-based
contextualisation and that linguistic features like orthography can sometimes
be minimised without substantial loss of performance.
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Chapter 8

Computational Social Science and
Cultural Analytics

8.1 The corpora they are a-changing:

a case study in Italian newspapers

The use of automatic methods for the study of lexical semantic change (LSC)
has led to the creation of evaluation benchmarks. Benchmark datasets, how-
ever, are intimately tied to the corpus used for their creation questioning their
reliability as well as the robustness of automatic methods. This contribution
investigates these aspects showing the impact of unforeseen social and cul-
tural dimensions. We also identify a set of additional issues (OCR quality,
named entities) that impact the performance of the automatic methods, es-
pecially when used to discover LSC.

8.1.1 Methodology

To test benchmark independence and models’ robustness for LSC, we design
a set of experiments using two source corpora, a common benchmark, and a
common architecture for LSC detection.
The first corpus is the “L’Unità” corpus [14]. It covers a time span between
1945–2014 and it has been collected, pre-processed, and released for the
DIACR-Ita (Diachronic Lexical Semantics in Italian) task [18], a LSC change
shared task for Italian. Texts were extracted from PDF files by using the
Apache Tika library1 and pre-processed with spaCy2 for tokenization, PoS-
tagging, lemmatization, named entity recognition and dependency parsing.
The second corpus was obtained by crawling a publicly available digital
archive of the Italian newspaper “La Stampa”. The corpus covers a shorter

1https://tika.apache.org/
2https://spacy.io/

https://tika.apache.org/
https://spacy.io/
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time period (1945–2005) and it was pre-processed using the same tools and
pipeline of “L’Unità”. Each corpus is split into two sub-corpora, C1 and C2,
covering different time periods. Table 8.1 summarises the basic statistics of
corpora and the time periods of each sub-corpus.

Corpus Subcorpus Tokens
L’Unità C1 [1945 – 1970] 52,287,734
L’Unità C2 [1990 – 2014] 196,539,403
La Stampa C1 [1945 – 1970] 670,281,513
La Stampa C2 [1990 – 2005] 1,193,959,080

TABLE 8.1: Corpora statistics.

The corpora present two major differences. First, as shown in Table 8.1, the
number of tokens in “La Stampa” is consistently larger than “L’Unità”. Sec-
ond, the political and social orientations of the two newspapers are different.
Historically, “L’Unità” has been the official newspaper of the Italian Commu-
nist Party and of its successors PDS/DS. “La Stampa” is the oldest newspa-
per in Italy, traditionally it has voiced centrist and liberal positions.
The only benchmark for Italian has been proposed in the context of DIACR-
Ita. The dataset contains 18 target lemmas, 6 of which are instances of a LSC.
The dataset was manually created using the “L’Unità” corpus, where a valid
LSC corresponds to the acquisition of a new meaning by a target word in C2.
As architecture for automatic LSC detection, we obtain compara-
ble diachronic representations of word meanings by re-implementing
the Word2Vec Skipgram model [157] with Orthogonal Procrustes (OP-
SGNS) [86]. In particular, we adopted the implementation proposed
by Kaiser, Schlechtweg, and Walde [101], a state-of-the-art system that
ranked 1st both at DIACR-Ita and at SemEval 2020 Task 1: Unsupervised
Lexical Semantic Change Detection [205]. Model parameters are reported in
Appendix C.1. Word embeddings were generated using lemmas to reduce
sparseness and facilitate the evaluation against the benchmark.

8.1.2 Testing for Robustness and Independence

Testing for robustness and consistency for LSC is not trivial since it requires
to distinguish between two strictly connected dimensions: (i) reliability of
the benchmark (dataset dimension), and (ii) variations in data distributions
(corpora dimension). The first dimension (dataset) is analysed by comparing
on the DIACR-Ita benchmark the performances of the same model trained on
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the two corpora. The corpora dimension is investigated by manually inspect-
ing the disagreements between the model predictions. All 18 target words in
the benchmark satisfy a minimal frequency threshold of 10 both in C1 and C2

in “La Stampa”, allowing us to reliably compare the results.
To study the reliability of the DIACR-Ita benchmark with respect to the un-
derlying corpus, for each target word in the benchmark, we computed the
cosine similarity of its embedding representation from each sub-corpus (C1

and C2). To account for the random initialisation of the OP-SGNS parameters,
we ran 10 experiments with different initialisations and averaged the results.
The system accuracy is computed as the fraction of correctly predicted words
over the total number of words in the benchmark. A target word is deemed
as an instance of LSC when its cosine similarity across the two time periods
is below a given threshold λ∗.
Since the focus is on the reliability of the benchmark across corpora, and not
the system performances, the threshold λ∗ for each corpus is set up to the
value that maximises the system performance on the corpus.
Using the optimal threshold, our implementation of OP-SGNS obtained an
accuracy of 0.96± .02 when trained on “L’Unità” and 0.83± .00 when trained
on “La Stampa”, a difference spawned by the incorrect classification of the
words ape (LSC), rampante (LSC), and brama (stable).
To understand the role of the two corpora, we compare the target word sim-
ilarities between C1 and C2 on the two corpora. Figure 8.1a and Figure 8.1b
illustrate the similarities of the stable and LSC target words, respectively.
Overall, the identification of LSC target words seems consistent among the
two corpora, and lets us assume that the benchmark is reliable and the algo-
rithm is robust.
We further analyse the system’s disagreements by manually exploring their
occurrences in each corpus for every time period.3 For the target brama
(‘yearning’), “La Stampa” indicates a potential LSC. The manual inspection,
however, has confirmed the annotation in the benchmark (i.e., a stable mean-
ing) showing that the change is triggered by the presence of this word in band
names in the C2 portion of the corpus. Ape (‘bee’) is listed in the benchmark
as an LCS, since in C2 it refers not only to the insect, but also to a three-
wheeled vehicle. Despite this new sense is present in the C2 sub-corpus of
“La Stampa”, the difference in similarity is above the threshold. Interestingly,
in this corpus we observe the three-wheeled vehicle sense also in C1, espe-
cially as part of paid advertisements. This points to a bias in the corpus (i.e,

3We use NoSketch Engine https://nlp.fi.muni.cz/trac/noske.

https://nlp.fi.muni.cz/trac/noske
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(A) Stable targets. (B) LSC targets.

FIGURE 8.1: LSC change scores computed using cosine simi-
larity on both “L’Unità”and “La Stampa”corpus. The dashed
lines indicate the λ∗ thresholds, computed respectively on
“L’Unità”and “La Stampa”corpus. Similarities below the

thresholds trigger an LSC.

“L’Unità”) used to create the benchmark, namely the lack of (or extremely
limited) presence of advertisements, which has obfuscated the occurrence of
the three-wheeled vehicle sense and suggested ape as a good candidate for
an LSC. Ape is interesting also for another reason: the discrepancy between
when it was first on the market (1948) and its first attestation in the Saba-
tini Coletti dictionary (1983). Further related to the more commercial nature
of the “La Stampa”newspaper is the higher difference in similarity with re-
spect to the “L’Unità” for the word rampante (‘rampant’/‘high-flying’). In
“La Stampa”, the word occurs also in C1 as part of the book title “Il barone
rampante”; this has mitigated the variation in context of usage with the oc-
currences of rampante in C2.

8.1.3 Models into the Wild

We further extended the analysis to the whole common vocabulary of the two
corpora to test the robustness of the computational model. In particular, we
consider the vocabulary intersection V of the two sub-corpora, that consists
of 48,681 lemmas. Then, we compute the two sets X and Y of cosine simi-
larities for all the words in V . A first analysis was conducted to understand
to which extent the rank order of the two sets X and Y are correlated. The
Spearman Correlation between the two sets is 0.67 (p-value < 0.01), which
indicates a positive correlation between the two rank orders, suggesting that
the output of OP-SGNS is similar across the two corpora. The plots of the
correlations are reported in Figure C.1 in Appendix C.2.
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In this analysis, the optimal thresholds cannot be computed due to the lack
of a gold-standard for the whole vocabulary intersection V . Potential LSC
instances are identified by using as threshold the difference between the av-
erage of the cosine similarities (µ) and the standard deviation (σ) over the set
V :

LCS(X) = {ti ∈ V | xi < µ(X)− σ(X)}

Where ti is the term associated with the ith similarity xi ∈ X . Similarly, we
compute the set LCS(Y ). The intersection of the two LCS sets consists of
2,283 lemmas. A quick inspection of the proposed LSCs immediately triggers
observations concerning two aspects: (i) the well formedness of a lemma; and
(ii) the presence of named entities (NEs). By well formedness, we refer to the
lemma being an actual word attested in a reference dictionary of Italian. In-
deed, some of the lemmas with the lowest similarity scores, e.g., gaucha, bwa,
bill, -anche, do not appear to be well formed Italian words. Reasons for this
are to be found in the quality of the digitized versions of the documents of the
two corpora, the presence of foreign words (e.g., frere, French for ‘brother’),
as well as tokenization errors of the pre-processing tool. We use the list of
lemmas in the Sabatini Coletti dictionary to filter out all of these entries.
NEs appear to be an additional source of noise. Lemmas like albertarelli, be-
raudo, napoleoni, armellini, are all instances of NEs referring to people’s sur-
names. We automatically filter NEs in two steps: (i) for each word in a se-
quence tagged as NE by spaCy, we retrieve and store separately the corre-
sponding lemma; (ii) every candidate LSC lemma is matched against the list
generated in (i), greedily filtering all lemmas found to be part of a NE.
After the filtering, only 232 lemmas remain. We sample 50 lemmas (approx.
20%), for a manual inspection. For each lemma, we collected its definitions
and the associated year(s) of first attestation from the Sabatini Coletti. Then
we manually explored the context of occurrence of each lemma in each time
period for each corpus. The manual validation followed a similar approach
to the creation of DIACR-Ita gold standard: a lemma is considered to be un-
dergone an LSC only if the definition(s) of the sense are attested in C2 and
not in C1.
By simply using the date of first attestation in the dictionary, 37 lemmas do
not qualify as having undergone LSC between the two time periods. Of the
remaining 13 lemmas: three have no date of first attestation; five lemmas
have a date of first attestation after 1970 (i.e. these lemmas were not used
before); and five lemmas present new senses. However, when considering
only those lemmas with a new sense attested after 1970, this list reduces to
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two lemmas.
The manual exploration of the contexts of occurrence in both corpora
of the 50 lemmas showed that only four of them (8% of the total sam-
ple) can be considered correct examples of an LSC. Two of them, pal-
mare (‘obvious’/‘palmar’/‘hand-held computer’) and patteggiare (‘negoti-
ate’/‘plea’), are also attested in the Sabatini Coletti. The remaining two,
handicappare (‘to handicap’) and orgasmo (‘orgasm’), indicate a change of use
rather than an actual change of meaning. In particular, handicappare, and
namely its participial form, was used during the 80s/90s to refer to people
with disabilities, extending the initial meaning in C1 of “to assign an hand-
icap to a team”. The use of the word with this meaning is now derogatory
and it is not attested in the dictionary. On the other hand, orgasmo was used
in C1 in its figurative meaning of great or extreme anxiety, e.g. “nell’orgasmo
del momento” (‘in the excitement of the moment’). On the other hand, in
C2 is used with reference to sex and sexuality. Three additional lemmas are
signalled as lexical changes: pula, doc, and tac. However, they are officially at-
tested as different lemmas in the Sabatini Coletti, thus implying homonymy.
All remaining entries are false positives being either NEs or OCR errors. For
the NEs, these are cases where the NE also corresponds to a lemma in the
reference dictionary. A good example of this is borsellino. In C1, both corpora
present context of use with the dictionary meaning of “a small purse”. How-
ever, in C2, the contexts of use refer to the judge Paolo Borsellino4, killed in a
terrorist attack by the Mafia.
NEs introduce additional challenges while constructing a benchmark for
LSC, especially when they are homonyms with common nouns. A viable
solution to this problem would be to detect and disregard from the corpus
those entities that are homonyms of common nouns. This also calls for the
development of more robust systems for NE detection: besides our efforts at
filtering NEs, lots of them have remained as potential targets of LSC.

8.2 Analysis of lexical semantic changes in cor-

pora with the Diachronic Engine

With the growing availability of digitized diachronic corpora, the need for
tools capable of taking into account the diachronic component of corpora be-
comes ever more pressing. Recent works on diachronic embeddings show

4https://en.wikipedia.org/wiki/Paolo_Borsellino

https://en.wikipedia.org/wiki/Paolo_Borsellino
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that computational approaches to the diachronic analysis of language seem
to be promising, but they are not user friendly for people without a techni-
cal background. Diachronic Engine is a system for the diachronic analysis of
corpora lexical features. Diachronic Engine computes word frequency, con-
cordances and collocations taking into account the temporal dimension. It is
also able to compute temporal word embeddings and time-series that can be
exploited for lexical semantic change detection.

8.2.1 Motivation and Background

In recent works about computational diachronic linguistics, techniques based
on word embeddings produce promising results. In Semeval Task 1 [205], for
instance, type embeddings rich high performances on both subtasks. How-
ever, these techniques are not included in any aforementioned linguistic tool.
In order to bridge this gap, we try to build a tool that includes approaches
for the analysis of diachronic embeddings. The result of our work is Di-
achronic Engine (DE), an engine for the management of diachronic corpora
that provides tools for change detection of lexical semantics from a frequen-
tist perspective. DE includes tools for extracting diachronic collocations, con-
cordances in different time periods as well as for computing semantic change
time-series by exploiting both word frequencies and word embeddings sim-
ilarity over time.
The rest of this section is organized as follows: Section 8.2.2 describes the
technical details of DE, while Section 8.2.3 shows some use cases of our en-
gine that encompass that address time-series. We also present the results of
a preliminary evaluation about the system’s usability in Section 8.2.4.

8.2.2 Diachronic Engine

Diachronic Engine (DE) is a web application for lexical semantic change anal-
ysis in diachronic corpora. The DE pipeline needs diachronic corpora to com-
pute statistics about the corpus. A diachronic corpus must include a tempo-
ral feature (e.g., year or timestamp of the publication date); DE exploits that
feature to sort the documents.
We adopt the vertical format to represent word information, as specified for
the IMS Corpus Workbench (CWB). In a vertical corpus, each word is in a
new line. In each line, fields, called p-attributes, are separated by tabs. In
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DE the default p-attributes are word, lemma, PoS tag and syntactic depen-
dency. Non-recursive XML tags (s-attributes) on a separate line can be used
for representing sentences, paragraphs and documents.
Corpora can be served in vertical format5 or in plain-text mode; in the latter
case, the plain-text is transformed in vertical format using the Spacy UD-
Pipe6 [213] tool, which splits plain-text into sentences and then predicts the
PoS-tag, the lemma and the syntactic dependency for each token. UDPipe
is a dependency parser that provides models for several languages. Models
are built by using the Universal Dependencies 7 datasets as training data. In-
put files’ names must contain the temporal tag of the period to which they
refer. DE automatically detects temporal patterns in the name of the files. In
particular, the last sequence of numbers in the file name is used to sort the
documents.
Corpora are stored and managed by the CWB, a tool for the manipulation of
large, linguistically annotated corpora. In particular, DE relies on the Cor-
pus Query Processor (CQP) [48], a specialized search engine for linguistic
research.
For building temporal word embeddings, DE exploits Temporal Random In-
dexing (TRI) [12, 17] that computes a word vector for each time period by
summing shared random vectors over all the periods. TRI is able to produce
aligned word embeddings in a single step and it is based on Random Index-
ing [196], where a word vector (word embedding) svTk

j for the word wj at
time Tk is the sum of random vectors ri assigned to the co-occurring words
taking into account only documents dl ∈ Tk. Co-occurring words are defined
as the set of m words that precede and follow the word wj . Random vectors
are vectors initialized randomly and shared across all time slices so that word
spaces are comparable.
Future versions will include other approaches, such as Procustes [86], Dy-
namic Word Embeddings [236], Dynamic Bernoulli Embeddings [192] and
Temporal Referencing [61].
The DE architecture is based on the client-server paradigm. The back-end
of DE has been developed with Flask, a web framework written in Python.
Concordances are retrieved by CQP, that indexes the corpus as soon as it is
uploaded to the server, while collocations and frequencies are computed in
Python. The back-end provides a set of services by a REST API where the
input/output is based on JSON messages.

5https://www.sketchengine.eu/my_keywords/vertical/
6https://pypi.org/project/spacy-udpipe/
7http://universaldependencies.org

https://www.sketchengine.eu/my_keywords/vertical/
https://pypi.org/project/spacy-udpipe/
http://universaldependencies.org
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The back-end consists of three macro components: User Handler, Corpus
Handler and Diachronic Operations. The User Handler manages registered
users information such as username and passwords. Admitted operations
on users are creation, read, update and delete. The Corpus Handler Compo-
nent manages corpora information such as name, language, the list of fields
in the vertical files, corpus visibility. Moreover, it deals with corpora types:
each corpus has a label indicating if it is synchronic or diachronic. For di-
achronic corpora also the temporal range is stored. Operations admitted on
corpora are: creation, update, delete, search and read. The Diachronic Oper-
ations component shows frequency lists, collocations of words, time-series,
change-points and concordances. This component relies on CWB that in-
dexes vertical files.
The Diachronic Operations component architecture is sketched in Figure 8.2.
The front-end of DE has been developed with JHipster8, using Spring9 for
server-side applications and Angular for client-side applications. The front-
end communicates with the back-end by the means of the REST API.
The front-end design is inspired by the Google’s Material Design and the
Sketch Engine interface. The user interface provides multilingual support in
Italian and English, but we plan to extend it to other languages.
This architecture allows the independence between the back-end and the
front-end, in this way is possible to develop a different front-end or con-
nect the front-end to a different implementation of the back-end. The only
constraint is the REST API interface.
The homepage provides an easy access to all corpora owned by the logged
user with links to available tools. The front-end provides also tools for cre-
ating and managing users and corpora. In particular, it is possible to define
different grant permissions for each corpus.
The tool is distributed as open-source software under the GNU v3 license10.

DE tools

DE provides a set of tools for managing and querying diachronic corpora.
The core of the back-end is based on the IMS Open Corpus Workbench
(CWB) 11, which allows querying the indexed corpora by using the powerful
CQP. Other tools have been integrated to facilitate the analysis of a diachronic
corpus:

8https://www.jhipster.tech/
9https://spring.io/

10https://github.com/swapUniba/Diachronic-Engine
11http://cwb.sourceforge.net/

https://www.jhipster.tech/
https://spring.io/
https://github.com/swapUniba/Diachronic-Engine
http://cwb.sourceforge.net/
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FIGURE 8.2: Diachronic Engine corpora manager.

Word frequency Many works show a correlation between lexical seman-
tic change and frequency differences between time periods. Google
Ngram Viewer [155] uses n-grams frequencies over time to show the
change in the semantics of n-grams. SketchEngine exposes the Trends
tool, which uses a linear regression of frequencies to predict words that
appear to be changed. In DE, queries can be filtered by part-of-speech,
as well as by time periods. We use normalized frequencies, that can be
filtered by time period.

Collocations Collocations have shown to be an effective tool in diachronic
analysis [13]. A collocation is a sequence of words that occurs more
often than would be expected. In order to compute the collocation
strength we use the logDice [194]:

log
2fxy

fx + fy

logDice takes into account the frequency of the word fx, of the collocate
fy and the frequency of the whole collocation fxy. Collocation results
can be grouped by the PoS tag.

Concordances Concordances offer a way to find “the evidence” directly in
the text by exploiting the context. The Concordances tool lists instances
of a word with its immediate left and right context and the period the
collocation belongs to. An example of concordances from “L’Unità”
[14], is shown in Figure 8.3.
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FIGURE 8.3: DE shows the KWIC (Keyword in the context) “pi-
lotato”, shifted from meaning driven to meaning manipulated.

Time-series A time-series Γ(w) of a word w is an ordered sequence of cosine
similarities between the word vector at time k (vkw) and the previous one
at time k − 1 (vk−1

w ):

Γ(w)k =
vkw · vk−1

w

|vkw||vk−1
w |

Diachronic Engine relies on word vectors computed by Temporal Ran-
dom Indexing, but it is possible to integrate other approaches. In order
to detect change points, we use the Mean Shift algorithm [220]. Ac-
cording to this model, we define a mean shift of a general time series Γ
pivoted at time period j as:

K(Γ) =
1

l − j

l∑
k=j+1

Γk −
1

j

j∑
k=1

Γk (8.1)

In order to understand if a mean shift is statistically significant at time
j, a bootstrapping [62] approach under the null hypothesis that there is
no change in the mean is adopted. In particular, statistical significance
is computed by first constructing B bootstrap samples by permuting
Γ(ti). Second, for each bootstrap sample P, K(P ) is calculated to pro-
vide its corresponding bootstrap statistic and statistical significance (p-
value) of observing the mean shift at time j compared to the null distri-
bution. Finally, we estimate the change point by considering the time
point j with the minimum p-value score. The output of this process is a
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ranking of words that potentially have changed meaning. Time-series
is able to compare multiple words at the same time and allows to filter
words by time period.

8.2.3 Use cases

In this section, we describe two use cases concerning both historical and com-
putational linguistics. DE is an extension of existing tools for synchronic cor-
pora. It shares many of the use cases already available on those tools, such
as applications in lexicography, terminology and linguistics.

FIGURE 8.4: DE shows time-series of the word “terrorismo”.

Event detection through time-series

Lexical semantic changes can reveal aspects of real-world events, such us
global armed conflicts [117]. DE provides several tools to help events detec-
tion through time-series:

• the comparison of two time-series for highlighting potential correla-
tions between lexical-semantic changes

• the plot of the time-series of cosine similarity between two word vectors
over time, showing how the relatedness between two words changes
over time

• the detected change points can bring out hidden information
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In Figure 8.4, the time-series of “terrorismo” (terrorism) is shown. The time-
series appears to be influenced by real-world events happening in Italy. In
particular, we can observe a decrease in similarity starting in 1968 and culmi-
nating in 1970 during a crucial moment in Italy: “Anni di piombo” (Years of
Lead), years marked by terrorism and violent clashes carried out by political
activists.

Annotation of semantic shifts

The manual annotation of lexical-semantic shifts can be very expensive. Al-
though robust frameworks [200] for the annotations already exist and are
successfully used in evaluation tasks [205], no tools for facilitating the anno-
tation are available yet.
DE can provide useful tools for the annotation of semantic shifts:

1. Frequencies over time can be preliminary exploited to filter words that
have good coverage in the years under analysis;

2. Change points in time-series offer an overall and intuitive idea of the
potential semantic shifts;

3. Diachronic concordances and collocations can support the identifica-
tion of the type of change [28], such as when a word gains or loses a
meaning.

8.2.4 Evaluation

We place a particular focus on the usability of our tool by giving a satisfac-
tory experience. To understand the strength and weakness of the user inter-
face, we conduct a preliminary usability test, according to the eGLU protocol
[211]. We use 21 participants. As a first step of the evaluation, we want to test
the system’s usability by measuring the task success rate: the ratio of users
able to accomplish a set of predefined tasks. We ask participants to perform
four tasks and we compute the average task success over all the 21 partici-
pants. During the evaluation, all participants complete their tasks without
difficulties except for the showing frequency list task, where they had some
problems with the corpus selection. We have already fixed this issue: the user
is warned to choose a corpus from those available if no corpus is selected.
Results of the evaluation are reported in Table 8.2.
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Task Avg. task success
User registration 1

Login and show user information 1
Add a corpus 1

Show frequency list .8095
Overall .9523

TABLE 8.2: Results of the usability evaluation.

Moreover, we designed and dispensed a questionnaire for measuring user
satisfaction. The questionnaire is composed of ten questions about the usabil-
ity and the design of DE with a Likert scale of five values. The questionnaire
results return an average score of 84.05/100. The system appear likeable to
use.

8.3 Emerging Trends in Gender-Specific Occupa-

tional Titles in Italian Newspapers

Throughout history, the prerogative use of specific gender forms over par-
ticular professions can fade away by introducing changes in the language
lexicon (e.g., neologisms) or in the language usage (e.g., word frequencies).
The way the lexicon is affected by those changes depends on the grammatical
gender system, i.e. the set of rules that define the agreement between noun
classes forms and the other parts-of-speech. Grammatical gender systems
can vary dramatically from one language to another. Gygax et al. [82] pro-
pose a classification of languages based on their grammatical gender system.
In this work, we focus on the Italian language, a grammatical gender lan-
guage in which all nouns must be classified for gender. The Italian gen-
der system admits three categories for nouns: gender-specific ending nouns,
mobile gender nouns, and nouns where the gender is specified through de-
terminers and adjectives [142]. In gender-specific ending nouns, the gen-
der forms are expressed through completely different lexical roots (e.g., gen-
ero/nuora). In mobile gender nouns, the specific gender forms share the same
lexical root, and the semantic gender is instead represented by different suf-
fixes (e.g., scrittore/scrittrice). In other cases, the semantic gender of a noun is
inferred only by the determiner and/or adjective (e.g., il giudice, la giudice).
The peculiar characteristic found in the Italian language has strong repercus-
sions in the way people refer to occupational titles, because a specific gender
form might be preferred over the other due to historical reasons, regardless
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of the gender of the actual person being talked about [195]. This has become
a hot-button issue in the last years, especially as a result of the United Na-
tions Resolution “Transforming our world: the 2030 Agenda for Sustainable
Development” with its global indicator framework for Sustainable Devel-
opment Goals (SDGs), and specifically of SDG 5 Achieve gender equality and
empower all women and girls (sub-goal 5.1 End all forms of discrimination against
all women and girls everywhere) [128].
The objective of this work is to monitor how the use of gender-specific occu-
pational titles has changed in the Italian language over the years through the
use of diachronic analysis tools. We would like to emphasize that the goal
is not to map the composition of men and women for each profession over
time, as this cannot be reliably inferred from text. Instead, we are interested
in gauging the cultural relevance of the gender-specific titles over time, as re-
flected in the news domain. Accordingly, the contributions in this work can
be summarized as follows:
(i) We analyze emerging trends in the use of gender-specific occupational
titles in the Italian language in a corpus of newspaper articles.12

(ii) We perform a deep-dive analysis of the figures that have guided a signif-
icant shift for two professions in particular.

8.3.1 Corpus

Occupational titles occurrences are extracted from a diachronic corpus that
comprises two sub-corpora. The former corpus is the “L’Unità” corpus [14]
that covers the time period 1945-2014. The latter is crawled by the publicly
available digital archive of the Italian newspaper “La Stampa” covering the
period 1945-2005 and processed using the same methodology mentioned in
[14]. In order to align the two sub-corpora time ranges, we consider a sub-
portion of the “L’Unità” corpus that spans the period 1948-2005. The overall
corpus contains 3,529,820,155 tokens and spans the period 1948-2005. Cor-
pus statistics are reported in Table 8.3. The corpus presents two main critical
issues. First, despite having performed pre-processing and filtering, the doc-
uments from the earlier periods suffer from several OCR errors and noise.

12All data collected in this experiment is available here: https://github.com/pierl
uigic/igsot

https://github.com/pierluigic/igsot
https://github.com/pierluigic/igsot
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Second, data is not equally distributed, the number of tokens drops dramat-
ically in the first years. Text is processed using the UDPipe model [214] in-
cluded in spaCy13. The UDPipe model is trained on the Italian Stanford De-
pendency Treebank [32]. Each sentence is tokenized, lemmatized and anno-
tated with PoS-tags, named entity tags and dependency relations. Moreover,
the UDPipe model provides information about inflectional features of nouns
exploited in the occupational titles extraction pipeline.

Corpus Tokens Period
L’Unità 425,833,098 1948-2014
La Stampa 3,145,959,127 1948-2005
Overall 3,529,820,155 1948-2005

TABLE 8.3: Corpus statistics.

8.3.2 Extracting Occupational Titles

The first step of our investigation consists of extracting a list of occupational
titles from a common Knowledge Base. Specifically, we have exploited Wiki-
data [229], since it has collected a wide range of entities related to profes-
sional activities. We first extracted a list of all entities that are an instance
of profession (wd:Q28640), or of an entity that is a subclass of it, for which
a label in the Italian language is present. This label commonly contains the
masculine gender form of the occupational title. Then, we filtered the list
of professions by only including those that possess the feminine form of la-
bel (wdt:P2521) property for the Italian language. This property denotes the
feminine variant of the occupational title, where applicable. The next step
consists of filtering out occupational titles for which the gender is not easily
distinguishable from text, such as those in which both gender variants share
the same lexical root (e.g. the aforementioned il giudice/la giudice), or those
that do not feature gender variants at all (e.g. la guardia, i.e. the guard). We
also removed all occupational titles that consist of two or more tokens. Then,
we reduced the list by filtering out polysemous words. A common example
of polysemy in the Italian language occurs when an occupational title shares
the same lexical form as the discipline to which it belongs, such as matem-
atica (feminine form of mathematician), or fisica (feminine form of physicist).
For each occupational title, we used WordNet to find all synsets in which it
appears and then removed it if the synset is a hyponym of the discipline.n.01

13https://spacy.io/

https://spacy.io/
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FIGURE 8.5: Final set of occupational titles (the feminine form
is reported) and the slope of odds(w)t.

synset. Moreover, we manually analyzed the list of remaining occupational
titles and removed other instances of polysemy, which would otherwise hin-
der the quality of the results. For instance, we filtered the word editrice (fem-
inine form of editor) as it can also appear in the phrase casa editrice (i.e. pub-
lishing house), and the word tecnica (feminine form of technician), which can
also refer to the word technique depending on context. We also decided to
remove words that have additional figurative meanings, such as cacciatrice
(feminine form of hunter) and guerriera (feminine form of warrior). This pro-
cess was undertaken by two independent annotators and then checked for
agreement. The final result of this process is T , a set of tokens that unequiv-
ocally refer to occupational titles, and that feature distinct masculine and
feminine gender variants which can reliably be extracted from text.

8.3.3 Experimental setup

Once we have acquired the set of occupational titles T , the next step of the
analysis consisted of measuring the frequency with which each term w ∈ T

occurs for each year in the corpus described in Section 8.3.1. We also make
use of the lexical information contained in said corpus in order to eliminate
any remaining ambiguity in the words. In fact, for each occupational title,
we counted a hit in the corpus if it appears with the NOUN tag. This allows
us to avoid counting occupational titles that can be confused with verbs or
adjectives, such as impiegato/impiegata, which can refer to the noun employee
in Italian, but also to the past participle conjugation of the verb to employ.
Moreover, we only counted a hit if the word has been registered with the sin-
gular form. This is done for two reasons: first, occurrences of the plural form
are outside the scope of this investigation, because in Italian the masculine
plural form is traditionally used as the default, while the feminine variant
of the plural is only used in exceptional cases, such as when referring to a
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group that is composed entirely of women. Second, this strategy filters out
cases where the plural form shares the same lexical root as one of the gender
variants. An example of this is the word infermiere (i.e. nurse), which can refer
to both the singular masculine form (as in l’infermiere), or the plural feminine
form (as in le infermiere).
Since the objective of this study is to observe the trends in the use of mascu-
line and feminine forms for occupational titles, we are interested in analyzing
how their frequency changes from one year to the other. However, measur-
ing the absolute frequency in each year for both forms would be misleading,
as it heavily depends on the amount of data that is available for each year in
the corpus. Instead, we compute the smoothed relative frequency ptw for each
word w and each year t using the following formula:

ptw =
f t
w + 1

Ct+ | V t |
(8.2)

where f t
w is the frequency of word w in the year t, Ct is the count of tokens

occurring in the corpus the year t and |V t| is the vocabulary length computed
on the year t. We compute ptw for both gender forms of each occupational title.
Then we compute odds(w)t which represents the log ratio of the smoothed
relative frequency of the feminine and masculine forms respectively:

odds(w)t = log
ptwf

ptwm

(8.3)

Operationally, odds(w)t specifies the probability that the feminine variant will
appear in a text relative to the masculine form in the specified year t. We
then obtain the time-series by concatenating the odds(w) values computed for
each year: (odds(w)1948, odds(w)1949, .., odds(w)2004). Assuming a linear course
of the time-series, three different scenarios can occur: (i) the occurrences of
the feminine form are growing; (ii) the occurrences of the masculine form are
growing; (iii) the ratio of the masculine and feminine form of an occupational
title are stable over time. We computed the regression line of the time-series,
using the linear least-squares regression method provided by the SciPy li-
brary14. We use the slope of the regression line to determine whether the
values of odds(w)t are changing over time. If the slope is positive/negative,
odds(w)t is increasing/decreasing over time, which means that the frequency
of wf is increasing/decreasing faster than that of wm, or that the frequency of
wm is decreasing/increasing faster than that of wf . For each regression line,

14https://www.scipy.org/

https://www.scipy.org/
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we also compute the statistical significance of the slope parameter relying
on the Wald Test [65]. Specifically, the null hypothesis states that the slope
parameter of the regression line is zero. In this stage, occupational titles for
which we get a p− value > 0.1 are filtered out.

8.3.4 Results

Figure 8.5 describes the value of the slope for each occupational title. De-
pending on the sign of the slope, we can identify two distinct groups of oc-
cupational titles. Green bars indicate that the slope of odds(w)t is positive, i.e.
the frequency of the feminine form is increasing relative to that of the mas-
culine form. On the other hand, red bars indicate that the slope is negative,
thus the frequency of the feminine form is decreasing relative to that of the
masculine form. Out of 35 occupational titles, 22 have a positive slope, while
11 result in a negative slope. In particular, the most positive slope is the one
associated to marciat-ore/-rice (i.e. racewalker), while the most negative slope
is fotomodell-o/-a (i.e. fashion model).
For many of these titles, the resulting slope can be mapped to specific social
changes. An interesting example in this regard is infermiere (i.e. nurse), to
which a negative slope is recorded: indeed, in Italy the position of nurse
has been opened to men starting from 197115. The odds(w) time series of
infermiera/infermiere is reported in Figure 8.6.

FIGURE 8.6: 10-year moving average of odds(w) for infer-
miera/infermiere.

Moreover, results show that managerial roles such as funzionaria (i.e. civil
servant), ispettrice (i.e. inspector), direttrice (i.e. director) are associated to a

15https://www.gazzettaufficiale.it/eli/id/1971/04/03/071U0124/sg

https://www.gazzettaufficiale.it/eli/id/1971/04/03/071U0124/sg
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positive slope, which is indicative of a stronger perception of women in such
roles.
A similar push can be observed also in the scientific domain, with a positive
trend for the words biologa (i.e. biologist), scienziata (i.e. scientist), as well as
the artistic one. On the other hand, we observe an increase in the usage of
the masculine form for segretario (i.e. secretary), ballerino (i.e. dancer), and
stenografo (i.e. stenographer).
In the second part of the experiment, we attempt to identify the people that
have driven the change in the usage of the feminine and masculine forms
of an occupational title. To do this, we retrieve the Named Entities (NEs) to
which the occupational titles refer for each year, and monitor their frequency.
In particular, we exploit the UDPipe annotations to extract valid NEs, i.e.
entities that are directly connected to an occupational title via a dependency
relation.
In Figure 8.7, we report the NEs extracted for two particular occupational ti-
tles: ballerino (i.e. male dancer) and poetessa (i.e. feminine poet). We have cho-
sen these titles because they feature the largest number of occurrences of NEs
in the corpus. The data is presented in the form of stacked line charts, which
report the absolute frequency of each NE so that the height of a coloured line
represents how many times a NE has been mentioned within a specified pe-
riod. The dotted black line reports the overall smoothed relative frequency
for the occupational title. Both the absolute frequency of NEs mentions and
the overall smoothed relative frequency are aggregated in bins of 5 years.
Three male dancers are referenced over a wide period due to their historical
role in the field: Rudolf Nureyev, Antonio Gades and Gene Kelly. However,
the last years have seen a rise in popularity of new figures such as Raffaele
Paganini, Joaquin Cortes, André de La Roche and Roberto Bolle.
Occurrences of specific female poets in the corpus keep low until the late
’70s. Ignoring a spike in 1953-1957, probably due to the quality issues in the
data collected, the individual absolute frequency of NE mentions seems to
agree with the overall smoothed relative frequency of the noun poetessa. In
the 1988-2002 period, four figures overwhelm the scene: Joy Grisham, Elena
Carasso, Maria Luisa Spaziani and Alda Merini. Even though the first work
of Maria Luisa Spaziani dates back to 1954, we observe a significant rise in
the occurrences in the early ’90s, when she is nominated three times for the
Nobel Prize for Literature 16. The increase in NE mentions over time is even
more apparent in this case, however, it follows a different trend compared

16https://en.wikipedia.org/wiki/Maria_Luisa_Spaziani

https://en.wikipedia.org/wiki/Maria_Luisa_Spaziani
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to that of the overall frequency of the noun poetessa, which suggests that the
word may have been used differently in the earliest period.
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(A) ballerino.

(B) poetessa.

FIGURE 8.7: Occurrences of Named Entities associated to two
occupational titles. The X-axis reports the time periods. The left
Y-axis reports the overall smoothed relative frequency of the oc-
cupational title. The right Y-axis reports the absolute frequency

of each Named Entity.
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Chapter 9

Conclusions

9.1 Summary of the Thesis

In this thesis we have approached the problem of modelling language change
using computational approaches from different perspectives. Particular at-
tention has been paid to lexical-semantic change, which poses significant
challenges from both a computational and a linguistic point of view and
allows the full potential of computational models to be expressed. Based
on well-established linguistic theories of language change, we aim to derive
computational models that can automatically track change, and to develop
methodologies for evaluating these models.
Specifically, we aim to use computational techniques to quantify, predict and
potentially explain patterns of semantic shift in meaning and usage. The core
premise of our study underscores the belief that understanding the trajectory
of word meanings can provide essential insights into the historical, cultural
and social contexts from which they emerge and evolve.
As illustrated in the previous chapters, addressing the multifaceted nature
of language change computationally involves numerous challenges that cut
across different research disciplines. These complexities have guided the tra-
jectory of this work. As such, the contributions in this thesis address several
key concerns:

• We have proposed a systematic review and classification of Temporal
Aligned Language Models

• With XL-LEXEME we have advanced the state-of-the-art for Lexical Se-
mantic Change Detection for English, German, Swedish and Russian
languages
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• We have provided methodological insights on the creation of Di-
achronic resources such as historical corpora preprocessing and the cre-
ation of a benchmark for Lexical Semantic Change Detection

• We have introduced longitudinal studies of Language Change, for both
morphological and semantic changes

9.2 Answers to the Research Questions

This section provides a comprehensive response to each of the RQs defined
in chapter 1.1, based on the results of the work presented in chapters 4 to 8.

9.2.1 RQ1. How do different models perform across diverse

languages and datasets when subjected to benchmarks

specifically designed for Lexical Semantic Change De-

tection?

In the leading lexical-semantic change detection methods, models that use
temporal alignment have gained prominence. This is evident from the results
of SemEval-2020 Task 1 and DIACR-Ita, where many of the best performing
models adopted the temporal alignment approach. Despite the growing pop-
ularity of contextualised models in other areas of NLP, they consistently un-
derperform in lexical-semantic change detection. However, the correlations
obtained are relatively weak.
The systems presented in RuShiftEval represented a paradigm shift. These
systems heralded a new era in the field, consistently demonstrating strong
correlations with the test set, especially in the graded task of lexical-semantic
change. In particular, the best performers among them are synchronous sys-
tems, which are mainly trained on Word Sense Disambiguation or Word-in-
Context datasets with synchronous data.
Following these developments, XL-LEXEME was introduced. XL-LEXEME
(Section 7.1) stands out as the first model to achieve significant correla-
tion in the graded lexical-semantic change task, with results not seen in re-
lated work. Interestingly, XL-LEXEME excels in state-of-the-art performance
across all languages, save for Latin. This exception can be attributed to the
absence of ancient Latin both in the foundational language model (XLM-R)
and the WiC training dataset utilized for training XL-LEXEME. This chal-
lenge with Latin underscores the continued relevance of Temporal Language
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Models, which, despite requiring less data, often outshine in performance
when dealing with low-resource languages.
The road to progress in lexical-semantic change is not without its challenges.
A major area of concern remains the binary task. There is a noticeable lack
of research aimed at the binary task. In this Thesis to bridge this gap, we
have introduced two pioneering studies: (i) the Gaussian Mixture model, as
discussed in Section 4.2, and (ii) a comprehensive exploration of the distri-
bution of change scores across various models and languages, detailed in
Section 4.1.

9.2.2 RQ2. To what extent are synchronic models equipped

to understand and track diachronic language changes?

In Section 7.1, we introduced a model designed to investigate lexical seman-
tic changes using synchronic data. This model utilized a dataset sourced
from the Word-in-Context task, predominantly featuring contemporary cor-
pora. Our findings underscored the capability of such models to detect se-
mantic shifts effectively, even when relying on data spanning diverse histor-
ical periods.
A striking attribute of the proposed model is its adaptability. The model
demonstrated versatility across varied contexts: being repurposed for unre-
lated tasks, applied to unfamiliar languages, and most notably, when analyz-
ing data from epochs distinct from their training period. A distinctive edge
of the approach introduced in Section 7.1 is its independence from a sense
inventory, commonly associated with WSD-based methods. This unique fea-
ture possibly bolsters its prowess in generalizing unseen word usage scenar-
ios during training. We conclude from the results that models nurtured on
synchronic data provide excellent performance in modelling historical data
and are effective in detecting changes in language.
A demonstration of the ability of synchronic models to detect linguistic
change is given in 8.3. In this work, we used an NLP pipeline of synchronic
models to detect changes in the morphology of the Italian language. Specifi-
cally, the pipeline includes several tools from the spaCy1 library, including a
tokenizer, a lemmatizer, a morphological analyser, a named entity recogniser
and a PoS tagger.

1https://spacy.io

https://spacy.io
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While the outcomes of this study were largely qualitative, they resonated
with our preliminary assumptions, further affirming the proficiency of syn-
chronic model strategies. Through this integrated approach, the study suc-
cessfully identified instances of occupational titles within an expansive his-
torical newspaper archive, spanning 1948 to 2004. This enabled a compre-
hensive examination of the morphological variants of the occupational titles,
leading to the derivation of a morphological change score.

9.2.3 RQ3. How can benchmarks and resources for Language

Change be effectively designed to ensure comprehen-

sive and accurate results?

In Section 6.1, we elucidated the process of creating a historical corpus, a sig-
nificant feature of which is the pronounced occurrence of OCR errors. Such
errors, while a common fixture of historical corpora, can be particularly dis-
ruptive to analyses, especially when examining language change over time.
In 6.2, we introduced a benchmark dedicated to exploring shifts in the mean-
ings of words in the Italian language. Notably, our methodology diverges
from conventional ones cited in literature. For instance, we opted not to em-
ploy the concept of semantic proximity, a staple in datasets like SemEval 2020
Task 1 for English, Swedish, and German, as well as the RuShiftEval and
RuSemShift datasets for Russian.
Our benchmark, DIACR-Ita, draws inspiration from standard WSD annota-
tion techniques. The unique aspect of our annotation demands the elucida-
tion of a word’s meaning in each of its instances. The fruition of this method
was largely owed to the Sabatini-Coletti dictionary for Italian. This lexicon
pinpoints the first instance in which word senses appear. The Sabatini-Coletti
proved instrumental during the preliminary stages, assisting in earmark-
ing potential words with change meanings, and later during the annotation
phase by offering a comprehensive inventory of potential word senses.
However, while lexicographic resources such as the Sabatini Coletti are in-
valuable for detecting semantic shifts, they sometimes fall short when used
in combination with corpus linguistics. This shortcoming is mainly due to
the fact that such resources may not cover the full range of word senses, their
sense annotations may be outdated, or the data available to the author at the
time of editing may be insufficient. Furthermore, certain senses recorded in
these resources may not be arranged within the specific corpus under study.
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This discrepancy could be due to the fact that the sense belongs to a differ-
ent domain than the corpus, or simply due to its rarity, making it elusive to
sampling methods.
To bridge this gap, the integration of qualitative linguistic analysis with com-
putational techniques is recommended. Echoing this sentiment, we intro-
duced in 8.2 the Diachronic Engine. This tool augments traditional corpus
linguistic instruments, incorporating temporal data masks and state-of-the-
art methods to explore into the time series of language change.

9.2.4 RQ4. How effectively can large-scale quantitative stud-

ies capture and quantify the influence of socio-cultural

events on language change over time?

Large-scale longitudinal studies offer invaluable insights into the intricate
interplay between historical socio-cultural events and language transforma-
tion. Typically, linguistic shifts occur subtly and continuously. By examining
vast repositories of documents that stretch over extensive periods, we obtain
a vantage point that closely mirrors the natural progression of these changes.
While such an analysis holds immense potential for various disciplines, nu-
merous intricacies await exploration and resolution. In Section 4.3, we as-
sessed different models designed to generate time series of semantic shifts
in the Italian lexicon. The outcome revealed a notable variance between the
produced results and the annotations found in lexicographic resources. This
discrepancy could stem from inaccuracies within the lexicographic sources,
noise present in the analyzed corpus, or, most significantly, the precision of
computational methodologies employed. A pressing challenge in this do-
main involves pinpointing tools adept at detecting change points in time se-
ries. Our exploration in 4.3 was somewhat hampered by our wide search
approach, probing diverse semantic changes without specific boundaries.
Conversely, the outcomes of the work presented in Section 8.3, harmonized
with our preliminary hypotheses. We deliberately narrowed our focus, tar-
geting specific linguistic variations. This approach enabled us to discern
correlations between shifts in the morphology of the Italian language and
the socio-cultural dynamics of the given era. Specifically, we delved into
the morphology of occupational titles, seeking to discern if languages with
gender-based grammatical systems, like Italian, exhibit morphological evo-
lutions influenced by societal occurrences.
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For instance, post the 1970s, there was a marked rise in the masculine form
of the word infermiere (i.e. nurse), correlating with the period when the nurs-
ing profession opened its doors to men. Simultaneously, there was a surge
in feminine grammatical occurrences associated with managerial positions,
signaling an uptick in the female presence in these roles. A subsequent quali-
tative assessment revealed that shifts in occupational titles often aligned with
renowned or influential figures.
Large-scale longitudinal studies are those that allow us to analyse how his-
torical cultural or social events intervene in language change. Language
change usually occurs gradually over time, and the ability to observe it over
large collections of documents spanning decades provides a perspective that
is very close to the real situation. Although this type of analysis is very inter-
esting for various applications, several aspects remain to be understood and
resolved.

9.3 Limitations and Future Work

In this thesis we have proposed various computational approaches to lan-
guage change, with a particular focus on semantic change over time. It
quickly becomes apparent that there is a need for approaches that also cover
other types of change, primarily at other levels of language, such as syntax,
which has been extensively studied in linguistics, as in the case of grammat-
icalisation, or at the phonetic level, with various approaches present in the
linguistic literature and significant phonetic changes that have occurred over
time, such as the Great Vowel Shift. In addition, changes in the language that
are not related to time, such as geographical changes, in particular those due
to linguistic variation and the spread and development of dialects, remain
under-researched.
In particular, there has been little or no effort to develop computational
approaches for studying the interaction between languages over time and
space. Regarding the specific problem of semantic change over time, al-
though research in this area has progressed rapidly in recent years, important
open questions remain that require greater effort.
In particular, while there are now high performance models for ranking
words in order of semantic change, the question of accurately detecting se-
mantic change remains open and unsolved. The problem of recognition be-
comes much greater when moving from a simplified setting of two time pe-
riods to more extensive spans involving hundreds of time periods. In this
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particular setting, there is a significant gap in the literature, both in terms of
models and in terms of data and evaluation. Moving to multiple time periods
opens up several avenues, with two main dimensions of the problem that re-
quire aggregation: the temporal dimension and the dimension of meanings.
The temporal dimension can be complex to model because it involves dif-
ferent sub-factors, such as the granularity of the temporal data and the level
of aggregation, or the different possibilities for comparison, such as com-
parison with the first or last period, or comparison with successive periods.
At the same time, however, the temporal dimension can provide interesting
insights, and looking at time series as a whole can reveal patterns that are
not apparent when only two time periods are considered. The dimension of
meanings, on the other hand, is a variable that is difficult to process because
the senses of a word may be less or more represented in a given historical
period, and their absence may only be due to an under representation of the
rarer senses of a word, making the frequency of senses in general a major
obstacle. The granularity of meaning is also a difficult hurdle to overcome, if
not by imposing a priori constraints on the analysis.
On the other hand, the possibility of building models that can explain the pre-
dictions remains unexplored. The most powerful models today only provide
a score that says little about what kind of semantic change has occurred and
why. In particular, there is a need to develop models that can sufficiently dif-
ferentiate the senses of a word over time to highlight precisely which mean-
ing has changed. It is also necessary to develop models capable of classifying
types of semantic change, which, as described in the Background chapter, can
vary according to the linguistic literature. It is necessary to identify the cause
of the semantic change, which can be of various kinds, social, cultural or
other. And once the nature of the cause has been identified, it is necessary to
identify possible triggering factors, such as particular historical events, e.g.
the introduction of a new technology or the outbreak of a war.
Finally, there is a need to develop new technologies for studying language
change, including for under-represented languages. Language change is a
complex phenomenon to analyse because it requires many resources, and
existing models for making robust predictions contribute to increasing the
amount of data needed. It is therefore necessary to introduce new meth-
ods and models that can overcome these obstacles. One solution could be to
use the latest Large Language Models for the synthetic generation of large-
scale linguistic phenomena. This solution would allow current studies to be
extended to different time periods and languages not currently covered, or
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pilot studies to be carried out before embarking on large and costly data col-
lections.
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A.1 Hyper-parameters

Hyper-parameter Value
hidden act gelu

hidden dropout prob 0.1

hidden size 1024

initializer range 0.02

intermediate size 4096

layer norm eps 1e-05

max position embeddings 514

num attention heads 16

num hidden layers 24

position embedding type absolute

vocab size 250004

learning rate

cross-encoder 1e-05
XL-LEXEME 1e-05

weight decay

cross-encoder 0.01
XL-LEXEME 0.00

max sequence length

cross-encoder λ = 256

XL-LEXEME λ∗ = 128

TABLE A.1: XL-LEXEME and cross-encoder hyper-parameters.
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B.1 Tug of War

B.2 Self-embedding distance (SED)

FIGURE B.1: Average SED over layers
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WiC-en MCL-WiC-en XL-WiC-fr XL-WiC-it WiC-ITA-it DWUG-de
Instances Dev Train Test Dev Train Test Dev Train Test Dev Train Test Dev Train Test Dev Train Test

nouns TP 196 1474 422 290 2093 263 275 - 261 65 340 180 166 1153 174 778 2402 783
TN 199 1320 409 292 2031 265 273 - 253 62 312 180 156 463 175 168 465 163

verbs TP 123 1240 278 126 1095 149 120 - 117 34 228 115 36 414 31 349 1081 326
TN 120 1394 291 120 1175 149 142 - 155 37 259 116 50 200 49 249 680 270

adjectives TP - - - 78 724 76 84 - 101 - - - 46 347 27 - - -
TN - - - 80 706 68 72 - 83 - - - 38 119 25 - - -

ALL TP 319 2714 700 500 4000 500 500 - 500 99 568 295 250 1999 250 1127 3483 1109
TN 319 2714 700 500 4000 500 500 - 500 99 571 296 250 806 250 417 1145 433

TABLE B.1: True Positives (TP) and True Negatives (TN) for
different benchmarks and part-of-speech

WiC-en MCL-WiC-en XL-WiC-fr XL-WiC-it WiC-ITA-it DWUG-de
Layer Train Test Train Test Train Test Train Test Train Test Train Test

nouns
1 0.593 0.606 0.656 0.727 - 0.591 0.642 0.679 0.644 0.555 0.808 0.799
6 0.697 0.656 0.720 0.812 - 0.661 0.678 0.713 0.694 0.699 0.808 0.800

12 0.691 0.683 0.796 0.847 - 0.677 0.678 0.689 0.682 0.759 0.806 0.809

verbs
1 0.558 0.513 0.572 0.606 - 0.530 0.569 0.562 0.478 0.539 0.597 0.597
6 0.657 0.613 0.683 0.782 - 0.561 0.581 0.582 0.575 0.586 0.643 0.633

12 0.615 0.611 0.752 0.805 - 0.622 0.639 0.593 0.459 0.615 0.630 0.640
adjectives 1 - - 0.650 0.699 - 0.539 - - 0.666 0.653 - -

6 - - 0.703 0.789 - 0.574 - - 0.706 0.687 - -
12 - - 0.738 0.819 - 0.653 - - 0.733 0.695 - -

TABLE B.2: BERT: Comparison of F1 score scores obtained by
threshold-based classifiers for Word in Context (WiC) trained
on development sets. The threshold is determined on the de-
velopment set and applied to both the train and test sets. Re-
sults are provided for different parts of speech and WiC bench-
marks. We report in bold the best result for each considered

layer, benchmark, and data sets.

B.3 Word-in-Context (WiC)

In the WiC experiments, we leveraged pre-trained models without perform-
ing any kind of fine-tuning (therefore not using the Train set). The Dev set,
as in traditional experimental settings, was used to tune the only parameter
involved in our experiments: the threshold used to determine if the words
in the two sentences have the same meaning or not. In other words, pairs
of examples for which the cosine similarity is lower than the threshold are
classified as negative; otherwise, they are classified as positive. In our ex-
periments, we follow Pilehvar and Camacho-Collados [172] in tuning the
threshold-based classifier on the development set (Dev), thus being able to
compare with their results. Additionally, for French, a Train set is not avail-
able. PoS-specific thresholds have been computed to guarantee a fair evalua-
tion across different PoS tags. Regarding the size of the PoS-specific sets, we
argue that the number of examples, even if small, is sufficient to establish a
binary threshold. This is supported by our results across different datasets,
which achieve comparable outcomes to the SOTA result on the full set (not
PoS split, as shown in Table 7.4). We would like to highlight that similar
results are obtained when using the Train set instead of the Dev set for the
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WiC-en MCL-WiC-en XL-WiC-fr XL-WiC-it WiC-ITA-it DWUG-de
Layer Train Test Train Test Train Test Train Test Train Test Train Test

nouns
1 0.530 0.521 0.592 0.632 - 0.588 0.612 0.645 0.571 0.582 0.819 0.811
6 0.624 0.628 0.675 0.738 - 0.625 0.690 0.675 0.691 0.691 0.807 0.794

12 0.644 0.611 0.705 0.780 - 0.707 0.644 0.680 0.691 0.713 0.813 0.812

verbs
1 0.563 0.547 0.564 0.576 - 0.520 0.562 0.524 0.477 0.601 0.618 0.617
6 0.604 0.555 0.622 0.682 - 0.571 0.596 0.554 0.555 0.566 0.669 0.627

12 0.623 0.586 0.698 0.720 - 0.662 0.552 0.543 0.578 0.506 0.667 0.675
adjectives 1 - - 0.548 0.568 - 0.531 - - 0.633 0.614 - -

6 - - 0.676 0.736 - 0.598 - - 0.715 0.750 - -
12 - - 0.707 0.735 - 0.701 - - 0.600 0.683 - -

TABLE B.3: mBERT: Comparison of F1 score scores obtained by
threshold-based classifiers for Word in Context (WiC) trained
on development sets. The threshold is determined on the de-
velopment set and applied to both the train and test sets. Re-
sults are provided for different parts of speech and WiC bench-
marks. We report in bold the best result for each considered

layer, benchmark, and data sets.

threshold selection.

B.3.1 The DWUG benchmark

In the original SemEval DWUG benchmarks [205], human annotators were
provided with a target word and a pair of sentences and asked to estimate
the degree of change on a scale from 1 (change) to 4 (identical). The task is
analogue to a multi-class WiC task. We converted the original annotations
to a binary WiC benchmark. Specifically, we transformed the ground truth
for a specific pair of sentences as follows: if the average agreement of the
Lexical Semantic Change annotations was greater than 3.5, we considered
the meaning to be the same (assigned a label of 1); for sentence pairs with an
average agreement lower than 1.5, we considered the meaning to be different
(assigned a label of 0).

B.3.2 Size of WiC benchmarks

We split the considered WiC benchmarks in distinct sub-corpora for nouns,
verbs, and adjectives. In TableB.1, we provide the number of true (i.e. 1,
same meaning) and negative (i.e. 0, different meaning) instances for each
sub-corpus.

B.3.3 Macro-F1 across BERT layers

We examine the PoS sensitivity using WiC by comparing embedding similar-
ities across all BERT and mBERT layers. For sake of simplicity, we provide
additional results using Macro F1-score for layers 1, 6, and 12 across various
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PoS categories and corpora. Results are consistent across the layers, confirm-
ing the best performance for the noun syntactic class. We have omitted the
WiC results for XLM-R due to its tokenisation characteristics. For numerous
pairs of sentences, the XLM-R tokeniser generates more tokens than BERT
and mBERT, surpassing the input limit and causing the exclusion of target
words.
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B.4 WiC polysemy per language

FIGURE B.2: Distribution of polysemy (i.e., number of senses
on x-axis) of the target words in each Dev, Test, and Train WiC

set for each considered language

References Benchmark # targets
[205] DWUG-English 46
[205] DWUG-German 50
[205] DWUG-Swedish 44
[239] DWUG-Spanish 100

TABLE B.4: References and number of targets for each consider
artificial corpus
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B.5 Random Lexical Semantic Change

B.5.1 Artificial diachronic corpus

We generated an artificial diachronic corpus for LSC by utilising the SemEval
and LSCDiscovery benchmakrs for LSC in DWUG format1 (see Table B.4). In-
stead of incorporating data from both time periods, T1 and T2, we discarded
information from the first time period as it is more likely to contain word
meanings outside the pre-trained knowledge of the models under examina-
tion. We created two distinct artificial sub-corpora, C1 and C2, by randomly
sampling occurrences from the data of the second time period T2. The DWUG
English dataset contains data for 46 target words.
For each target t, we considered all sentences where another target t1, with
t1 ̸= t, appeared as potential candidates to emulate instances of semantic
change. We simulated a change instance through a random replacement, that
is by replacing t in the sentence where t1 occurred – i.e., t1 ← t. We sample
a varying number of sentences and perform replacements for each target,
thereby emulating a varying degree of semantic change.

1English: https://zenodo.org/records/5796878, German: https://zenodo.o
rg/records/5796871, Swedish: https://zenodo.org/records/5090648, Spanish:
https://zenodo.org/records/6433667

https://zenodo.org/records/5796878
https://zenodo.org/records/5796871
https://zenodo.org/records/5796871
https://zenodo.org/records/5090648
https://zenodo.org/records/6433667
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FIGURE B.3: PRT and JSD performance on the artificial LSC
dataset
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B.6 Lexical Semantic Change

Word Time span (Ranked) Farthest replacements lscw (k=1)

attack
T1 physical, degeneration, blast, crime, disease, death, condition, plane, affliction,

birthday attack
-0.036

T2 approach, force, onslaught, assault, exploit, challenge, commencement, aim,
worth, signal

0.059

bit
T1 nominative case, accusative case, cryptography, information theory, bdsm,

time,point, binary digit, sociologic, sublative
-0.018

T2 saddlery, chard, illative case, iron, bevelled, tack, small, gun, cut, elative case 0.067

circle
T1 wicca, circumlocution, encircle, astronomy, tavern, semicircle, around, logic,

go,wand
0.002

T2 pitch, place, graduated, figure, disk, territorial, enforce, worship, line, bagginess 0.064

edge
T1 brink, cricket, instrument, margin, polytope, side, edge computing, verge, de-

marcation line, demarcation
-0.015

T2 data, production, climax, division, superiority, organization, sharpness, graph,
win, geometry

0.047

graft
T1 lesion, bribery, felony, politics, bribe, corruption, autoplasty, surgery, nautical,

illicit
-0.047

T2 branch, stock, tree, fruit, shoot, join, cut, graft the forked tree, stem, portion 0.103

head
T1 headland, head word, capitulum, syntactic, pedagogue, fluid dynamics, hip

hop, headway, pedagog, word
0.004

T2 leader, organs, implement, top, tail, foreland, chief, bolt, axe, forefront 0.084

land
T1 real estate, real property, surface, property,build, physical object, Edwin Herbert

Land, electronics, landing, first person
-0.032

T2 realm, country, kingdom, province, domain, people, homeland, territory, nation,
region

0.076

lass
T1 sweetheart, girl, missy, woman, yorkshire, lassem, lasst, lassie, loss, miss 0.014
T2 fille, dative case, jeune fille, loose, lasses, unattached, young lady, young

woman, north east england, past participle
0.099

plane
T1 airplane, aeroplane, pt boat, heavier-than-air craft, glide , boat, lycaenidae, lift,

bow, hand tool
-0.197

T2 geometry, point, shape, surface, flat, degree, form, range, anatomy, smooth 0.205

player
T1 media player, idler, soul, thespian, person, individual, trifler, performer, some-

body, histrion
-0.065

T2 contestant, performing artist, actor, musician, musical instrument, music,
gamer, theater, player piano, play the field

0.042

prop
T1 props, airscrew, astronautics, actor, airplane propeller, seashell, stagecraft, stage,

property, art
-0.042

T2 around, rugby, imperative mood, about, singular, scrum, ignition, roughly, bal-
lot, manually

0.088

rag
T1 ragtime, nominative case, accusative case, rag week, terminative case, inflec-

tional, sublative, piece of material, tag, sanitary napkin
-0.049

T2 clothes, exhaustion, university, society, silk, ragged, journalism, haze, ranking,
torment

0.071

record
T1 attainment, track record, achievement, accomplishment, struct, number, intran-

sitive, record book, criminal record, disc
-0.036

T2 evidence, document, information, audio, recollection, storage medium, mem-
ory, electronic, sound recording, data

0.089

stab
T1 thread, staccato, feeling, nominative case, sheet, chord, bacterial, culture,

twinge, sensation
-0.046

T2 wound, tool, knife thrust, weapon, plaster, criticism, wire, pierce, thrust, try 0.029

thump
T1 clunk, throb, clump, thud, pound, thumping, rhythmic, sound, blow, hit -0.036
T2 muffled, hit, blow, sound, rhythmic, thumping, pound, thud, clump, throb 0.033

tip
T1 gratuity, first person, forty, bloke, singular, overturn, stringed instrument, un-

balanced, taxi driver, sated
-0.031

T2 brush, tap, strike, gift, tram, flex, tumble, heap, full, hint 0.070

TABLE B.5: Words annotated as changed in SemEval 2020 Task
1: Binary Subtask and retrieved farthest replacements for each

time span.
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FIGURE B.4: PRT and JSD performance on the artificial LSC
dataset
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C.1 OP-SGNS Parameters

Parameter Value
learning rate 0.025
min. frequency 10
downsampling rate 0.001
training epochs 5
negative sampling 5
context window 5
vector dimension 300

TABLE C.1: OP-SGNS Parameters for the creation of the word
embeddings.

The initial learning rate is set to 0.025, with a negative sampling of 5 and a
context window size fixed to 5.

C.2 Cosine similarities: Spearman Correlations

Figure C.1 shows the plots of the Spearman correlations between the two
sets of ranked similarities computed over the two sub-corpora, C1 and C2, of
“L’Unità” and “La Stampa”, respectively. The cosine similarities are binned
in bin of size 0.05 in the interval [0.0, 0.9]. The background histogram re-
ports the binned cosine similarity distribution for “L’Unità” (Figure (a)) and
“La Stampa” (Figure (b)). The foreground red plot shows the correspond-
ing Spearman correlation values when computed against the “La Stampa”
(Figure (a)) and “L’Unità” (Figure (b)), respectively.
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(A) L’Unità - La Stampa (B) La Stampa - L’Unità

FIGURE C.1: Correlation plots.



173

Bibliography

[1] Mostafa Abdou et al. “Word Order Does Matter and Shuffled Lan-
guage Models Know It”. In: Proc. of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Dublin, Ireland: Association for Computational Linguistics, May
2022, pp. 6907–6919.
DOI: 10.18653/v1/2022.acl-long.476. URL: https://aclan
thology.org/2022.acl-long.476.

[2] F. Abromeit et al. “Linking the Tower of Babel: Modelling a Massive
Set of Etymological Dictionaries as RDF”. In: Proceedings of the 5th
Workshop on Linked Data in Linguistics (LDL-2016): Managing, Building
and Using Linked Language Resources. 2016, pp. 11–19.

[3] Erez Lieberman Aiden and Jean-Baptiste Michel. “Culturomics:
Quantitative Analysis of Culture Using Millions of Digitized Books”.
In: 6th Annual International Conference of the Alliance of Digital Human-
ities Organizations, DH. Stanford, CA, USA: Stanford University Li-
brary, June 2011, p. 8. URL: http://xtf-prod.stanford.edu/xt
f/view?docId=tei/ab-003.xml.

[4] Reem Alatrash et al. “CCOHA: Clean Corpus of Historical Ameri-
can English”. In: Proceedings of The 12th Language Resources and Eval-
uation Conference, LREC 2020. Ed. by Nicoletta Calzolari et al. Mar-
seille, France: European Language Resources Association, May 2020,
pp. 6958–6966. URL: https://www.aclweb.org/anthology/20
20.lrec-1.859/.

[5] Rabab Alkhalifa et al. “QMUL-SDS @ DIACR-Ita: Evaluating Unsu-
pervised Diachronic Lexical Semantics Classification in Italian”. In:
Proceedings of the 7th evaluation campaign of Natural Language Processing
and Speech tools for Italian (EVALITA 2020). Ed. by Valerio Basile et al.
Online: CEUR.org, 2020.

[6] Jason Angel et al. “CIC-NLP @ DIACR-Ita: POS and Neighbor Based
Models for Lexical Semantic Change in Diachronic Italian Corpora”.

http://dx.doi.org/10.18653/v1/2022.acl-long.476
https://aclanthology.org/2022.acl-long.476
https://aclanthology.org/2022.acl-long.476
http://xtf-prod.stanford.edu/xtf/view?docId=tei/ab-003.xml
http://xtf-prod.stanford.edu/xtf/view?docId=tei/ab-003.xml
https://www.aclweb.org/anthology/2020.lrec-1.859/
https://www.aclweb.org/anthology/2020.lrec-1.859/


174 Bibliography

In: Proceedings of the 7th evaluation campaign of Natural Language Pro-
cessing and Speech tools for Italian (EVALITA 2020). Ed. by Valerio Basile
et al. Online: CEUR.org, 2020.

[7] Nikolay Arefyev et al. “DeepMistake: Which Senses are Hard to Dis-
tinguish for a WordinContext Model”. In: Computational Linguistics
and Intellectual Technologies - Papers from the Annual International Con-
ference "Dialogue" 2021. Vol. 2021-June. Section: 20. 2021.

[8] Florentina Armaselu et al. “LL(O)D and NLP perspectives on se-
mantic change for humanities research”. In: Semantic Web 13.6 (2022),
pp. 1051–1080.
DOI: 10.3233/SW-222848. URL: https://doi.org/10.3233
/SW-222848.

[9] Carlos Santos Armendariz et al. “CoSimLex: A Resource for Evaluat-
ing Graded Word Similarity in Context”. In: Proceedings of The 12th
Language Resources and Evaluation Conference, LREC 2020, Marseille,
France, May 11-16, 2020. Ed. by Nicoletta Calzolari et al. European
Language Resources Association, 2020, pp. 5878–5886. URL: https:
//aclanthology.org/2020.lrec-1.720/.

[10] Bing Bai et al. “Why Attentions May Not Be Interpretable?” In: Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 2021, pp. 25–34.

[11] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Clus-
tering”. In: Mach. Learn. 56.1-3 (2004), pp. 89–113.
DOI: 10.1023/B:MACH.0000033116.57574.95. URL: https:
//doi.org/10.1023/B:MACH.0000033116.57574.95.

[12] Pierpaolo Basile, Annalina Caputo, and Giovanni Semeraro. “Tempo-
ral Random Indexing: a Tool for Analysing Word Meaning Variations
in News”. In: Proceedings of the First International Workshop on Recent
Trends in News Information Retrieval co-located with 38th European Con-
ference on Information Retrieval (ECIR 2016). Ed. by Miguel Martinez-
Alvarez et al. Vol. 1568. CEUR Workshop Proceedings. Padua, Italy:
CEUR-WS.org, pp. 39–41. URL: http://ceur-ws.org/Vol-1568
/paper7.pdf.

[13] Pierpaolo Basile, Giovanni Semeraro, and Annalina Caputo. “Kronos-
it: a Dataset for the Italian Semantic Change Detection Task”. In:
Proceedings of the Sixth Italian Conference on Computational Linguistics.

http://dx.doi.org/10.3233/SW-222848
https://doi.org/10.3233/SW-222848
https://doi.org/10.3233/SW-222848
https://aclanthology.org/2020.lrec-1.720/
https://aclanthology.org/2020.lrec-1.720/
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
http://ceur-ws.org/Vol-1568/paper7.pdf
http://ceur-ws.org/Vol-1568/paper7.pdf


Bibliography 175

Ed. by Raffaella Bernardi, Roberto Navigli, and Giovanni Semeraro.
Vol. 2481. CEUR Workshop Proceedings. Bari, Italy: CEUR-WS.org,
Nov. 2019. URL: http://ceur-ws.org/Vol-2481/paper3.pdf.

[14] Pierpaolo Basile et al. “A Diachronic Italian Corpus based on
"L’Unità"”. In: Proceedings of the Seventh Italian Conference on Compu-
tational Linguistics, CLiC-it 2020, Bologna, Italy, March 1-3, 2021. Ed. by
Johanna Monti, Felice Dell’Orletta, and Fabio Tamburini. Vol. 2769.
CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL: http://c
eur-ws.org/Vol-2769/paper\_44.pdf.

[15] Pierpaolo Basile et al. “A New Time-sensitive Model of Linguistic
Knowledge for Graph Databases”. In: Proceedings of the 1st Workshop
on Artificial Intelligence for Cultural Heritage, AI4CH 2022, co-located
with the 21st International Conference of the Italian Association for Ar-
tificial Intelligence (AIxIA 2022), Udine, Italy, November 28, 2022. Ed.
by Rossana Damiano et al. Vol. 3286. CEUR Workshop Proceedings.
CEUR-WS.org, 2022, pp. 69–80. URL: https://ceur-ws.org/Vol
-3286/08\_paper.pdf.

[16] Pierpaolo Basile et al. “A New Time-sensitive Model of Linguistic
Knowledge for Graph Databases”. In: Proceedings of the 1st Workshop
on Artificial Intelligence for Cultural Heritage, AI4CH 2022, co-located
with the 21st International Conference of the Italian Association for Ar-
tificial Intelligence (AIxIA 2022), Udine, Italy, November 28, 2022. Ed.
by Rossana Damiano et al. Vol. 3286. CEUR Workshop Proceedings.
CEUR-WS.org, 2022, pp. 69–80. URL: https://ceur-ws.org/Vol
-3286/08\_paper.pdf.

[17] Pierpaolo Basile et al. “Diachronic Analysis of the Italian Language
exploiting Google Ngram”. In: Proceedings of Third Italian Conference
on Computational Linguistics (CLiC-it 2016) & Fifth Evaluation Campaign
of Natural Language Processing and Speech Tools for Italian. Final Work-
shop (EVALITA 2016). Ed. by Pierpaolo Basile et al. Vol. 1749. CEUR
Workshop Proceedings. Napoli, Italy: CEUR-WS.org, Dec. 2016. URL:
http://ceur-ws.org/Vol-1749/paper9.pdf.

[18] Pierpaolo Basile et al. “DIACR-Ita @ EVALITA2020: Overview of the
EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task”. In:
Proceedings of the Seventh Evaluation Campaign of Natural Language Pro-
cessing and Speech Tools for Italian. Final Workshop (EVALITA 2020), On-
line event, December 17th, 2020. Ed. by Valerio Basile et al. Vol. 2765.

http://ceur-ws.org/Vol-2481/paper3.pdf
http://ceur-ws.org/Vol-2769/paper\_44.pdf
http://ceur-ws.org/Vol-2769/paper\_44.pdf
https://ceur-ws.org/Vol-3286/08\_paper.pdf
https://ceur-ws.org/Vol-3286/08\_paper.pdf
https://ceur-ws.org/Vol-3286/08\_paper.pdf
https://ceur-ws.org/Vol-3286/08\_paper.pdf
http://ceur-ws.org/Vol-1749/paper9.pdf


176 Bibliography

CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL: http://c
eur-ws.org/Vol-2765/paper158.pdf.

[19] Pierpaolo Basile et al. “The Corpora They Are a-Changing: a Case
Study in Italian Newspapers”. In: Proceedings of The 2nd International
Workshop on Computational Approaches to Historical Language Change
2021, LChange@ACL-IJCNLP 2021, Online, August 6, 2021. Ed. by Nina
Tahmasebi et al. Association for Computational Linguistics, 2021,
pp. 14–20.
DOI: 10.18653/v1/2021.lchange-1.3. URL: https://doi.or
g/10.18653/v1/2021.lchange-1.3.

[20] Valerio Basile et al. “EVALITA 2020: Overview of the 7th Evaluation
Campaign of Natural Language Processing and Speech Tools for Ital-
ian”. In: Proceedings of Seventh Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020).
Ed. by Valerio Basile et al. Online: CEUR.org, 2020.

[21] Kaspar Beelen et al. “When Time Makes Sense: A Historically-Aware
Approach to Targeted Sense Disambiguation”. In: Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP 2021. Online: Associ-
ation for Computational Linguistics, Aug. 2021, pp. 2751–2761.
DOI: 10.18653/v1/2021.findings-acl.243. URL: https://a
clanthology.org/2021.findings-acl.243.

[22] Federico Belotti, Federico Bianchi, and Matteo Palmonari. “UNIMIB
@ DIACR-Ita: Aligning Distributional Embeddings with a Compass
for Semantic Change Detection in the Italian Language (short paper)”.
In: Proceedings of the Seventh Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020).
Ed. by Valerio Basile et al. Vol. 2765. CEUR Workshop Proceedings.
Online event: CEUR-WS.org. URL: http://ceur-ws.org/Vol-27
65/paper147.pdf.

[23] Federico Belotti, Federico Bianchi, and Matteo Palmonari. “UNIMIB
@ DIACR-Ita: Aligning Distributional Embeddings with a Compass
for Semantic Change Detection in the Italian Language (short paper)”.
In: Proceedings of the Seventh Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020).
Ed. by Valerio Basile et al. Vol. 2765. CEUR Workshop Proceedings.
Online event: CEUR-WS.org, Dec. 2020. URL: http://ceur-ws.or
g/Vol-2765/paper147.pdf.

http://ceur-ws.org/Vol-2765/paper158.pdf
http://ceur-ws.org/Vol-2765/paper158.pdf
http://dx.doi.org/10.18653/v1/2021.lchange-1.3
https://doi.org/10.18653/v1/2021.lchange-1.3
https://doi.org/10.18653/v1/2021.lchange-1.3
http://dx.doi.org/10.18653/v1/2021.findings-acl.243
https://aclanthology.org/2021.findings-acl.243
https://aclanthology.org/2021.findings-acl.243
http://ceur-ws.org/Vol-2765/paper147.pdf
http://ceur-ws.org/Vol-2765/paper147.pdf
http://ceur-ws.org/Vol-2765/paper147.pdf
http://ceur-ws.org/Vol-2765/paper147.pdf


Bibliography 177

[24] Wang Benyou, Emanuele Di Buccio, and Massimo Melucci. “Uni-
versity of Padova at DIACR-Ita”. In: Proceedings of the 7th evalua-
tion campaign of Natural Language Processing and Speech tools for Italian
(EVALITA 2020). Ed. by Valerio Basile et al. Online: CEUR.org, 2020.

[25] Elisa Bertino and Lorenzo Martino. “Object-oriented database man-
agement systems: concepts and issues”. In: Computer 24.4 (1991),
pp. 33–47.

[26] Erica Biagetti, Chiara Zanchi, and William Michael Short. “Toward
the creation of WordNets for ancient Indo-European languages”. In:
Proceedings of the 11th Global Wordnet Conference. University of South
Africa (UNISA): Global Wordnet Association, Jan. 2021, pp. 258–266.
URL: https://aclanthology.org/2021.gwc-1.30.

[27] Yuri Bizzoni et al. “Linguistic Variation and Change in 250 Years of
English Scientific Writing: A Data-Driven Approach”. In: Frontiers in
Artificial Intelligence 3 (2020).
ISSN: 2624-8212.
DOI: 10.3389/frai.2020.00073. URL: https://www.frontie
rsin.org/articles/10.3389/frai.2020.00073.

[28] Andreas Blank. Prinzipien des lexikalischen Bedeutungswandels am
Beispiel der romanischen Sprachen. Vol. 285. Walter de Gruyter, 2012.

[29] Andreas Blank. “Why do new meanings occur? A cognitive typology
of the motivations for lexical semantic change”. In: Historical semantics
and cognition ().

[30] Leonard Bloomfield. Language. Motilal Banarsidass Publ., 1994.

[31] Lars Borin, Markus Forsberg, and Johan Roxendal. “Korp - the corpus
infrastructure of Spräkbanken”. In: Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evaluation. Ed. by Nicoletta
Calzolari et al. Istanbul, Turkey: European Language Resources Asso-
ciation (ELRA), May 2012, pp. 474–478. URL: http://www.lrec-c
onf.org/proceedings/lrec2012/summaries/248.html.

[32] Cristina Bosco et al. “The EVALITA 2014 dependency parsing task”.
In: The Evalita 2014 Dependency Parsing task (2014), pp. 1–8.

[33] Michel Bréal. Essai de sémantique (science des significations). Hachette,
1904.

[34] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In:
Proc. of NeurIPS. Ed. by Hugo Larochelle et al. 2020.

https://aclanthology.org/2021.gwc-1.30
http://dx.doi.org/10.3389/frai.2020.00073
https://www.frontiersin.org/articles/10.3389/frai.2020.00073
https://www.frontiersin.org/articles/10.3389/frai.2020.00073
http://www.lrec-conf.org/proceedings/lrec2012/summaries/248.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/248.html


178 Bibliography

[35] Toby Burrows et al. “Mapping Manuscript Migrations: Digging into
Data for the History and Provenance of Medieval and Renaissance
Manuscripts”. In: Manuscript Studies: A Journal of the Schoenberg Insti-
tute for Manuscript Studies 3.1 (2018), pp. 249–252.

[36] Philip Burton. “Christian Latin”. In: A companion to the Latin language.
Ed. by James Clackson. Oxford: Wiley-Blackwell, 2011, pp. 485–501.

[37] Xingyu Cai et al. “Isotropy in the contextual embedding space: Clus-
ters and manifolds”. In: Proc. of the International Conference on Learning
Representations. 2021.

[38] Valerio Di Carlo, Federico Bianchi, and Matteo Palmonari. “Training
Temporal Word Embeddings with a Compass”. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI. Honolulu, Hawaii,USA: AAAI Press, Jan. 2019, pp. 6326–
6334.
DOI: 10.1609/aaai.v33i01.33016326. URL: https://doi.or
g/10.1609/aaai.v33i01.33016326.

[39] Pierluigi Cassotti et al. “A Comparative Study of Approaches for the
Diachronic Analysis of the Italian Language”. In: Proceedings of the 4th
Workshop on Natural Language for Artificial Intelligence (NL4AI 2020) co-
located with the 19th International Conference of the Italian Association for
Artificial Intelligence (AI*IA 2020), Anywhere, November 25th-27th, 2020.
Ed. by Pierpaolo Basile et al. Vol. 2735. CEUR Workshop Proceedings.
CEUR-WS.org, 2020, pp. 130–140. URL: https://ceur-ws.org/Vo
l-2735/paper40.pdf.

[40] Pierluigi Cassotti et al. “Analysis of Lexical Semantic Changes in Cor-
pora with the Diachronic Engine”. In: Proceedings of the Seventh Ital-
ian Conference on Computational Linguistics, CLiC-it 2020, Bologna, Italy,
March 1-3, 2021. Ed. by Johanna Monti, Felice Dell’Orletta, and Fabio
Tamburini. Vol. 2769. CEUR Workshop Proceedings. CEUR-WS.org,
2020. URL: https://ceur-ws.org/Vol-2769/paper\_71.pdf.

[41] Pierluigi Cassotti et al. “Analyzing Gaussian distribution of semantic
shifts in Lexical Semantic Change Models”. In: IJCoL. Italian Journal of
Computational Linguistics 6.6-2 (2020), pp. 23–36.

http://dx.doi.org/10.1609/aaai.v33i01.33016326
https://doi.org/10.1609/aaai.v33i01.33016326
https://doi.org/10.1609/aaai.v33i01.33016326
https://ceur-ws.org/Vol-2735/paper40.pdf
https://ceur-ws.org/Vol-2735/paper40.pdf
https://ceur-ws.org/Vol-2769/paper\_71.pdf


Bibliography 179

[42] Pierluigi Cassotti et al. “Emerging Trends in Gender-Specific Occupa-
tional Titles in Italian Newspapers”. In: Proceedings of the Eighth Italian
Conference on Computational Linguistics, CLiC-it 2021, Milan, Italy, Jan-
uary 26-28, 2022. Ed. by Elisabetta Fersini, Marco Passarotti, and Vi-
viana Patti. Vol. 3033. CEUR Workshop Proceedings. CEUR-WS.org,
2021. URL: https://ceur-ws.org/Vol-3033/paper52.pdf.

[43] Pierluigi Cassotti et al. “GM-CTSC at SemEval-2020 Task 1: Gaussian
Mixtures Cross Temporal Similarity Clustering”. In: Proceedings of the
Fourteenth Workshop on Semantic Evaluation, SemEval@COLING2020.
Ed. by Aurélie Herbelot et al. Barcelona (online): International Com-
mittee for Computational Linguistics, Dec. 2020, pp. 74–80. URL: htt
ps://www.aclweb.org/anthology/2020.semeval-1.7/.

[44] Pierluigi Cassotti et al. “WiC-ITA at EVALITA2023: Overview of
the EVALITA2023 Word-in-Context for ITAlian Task”. In: Proc. of
EVALITA. Parma, Italy: CEUR.org, Sept. 2023.

[45] Pierluigi Cassotti et al. “XL-LEXEME: WiC Pretrained Model for
Cross-Lingual LEXical sEMantic changE”. In: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Toronto, Canada: Association for Computational Lin-
guistics, July 2023, pp. 1577–1585.
DOI: 10.18653/v1/2023.acl-short.135. URL: https://acla
nthology.org/2023.acl-short.135.

[46] Jing Chen et al. “ChiWUG: Diachronic Word Usage Graphs for Chi-
nese”. Version 1.0.0. In: (Oct. 2023).
DOI: 10.5281/zenodo.10023263. URL: https://doi.org/10
.5281/zenodo.10023263.

[47] Christian Chiarcos et al. “Modelling Collocations in OntoLex-FrAC”.
In: Proceedings of Globalex Workshop on Linked Lexicography within the
13th Language Resources and Evaluation Conference. Marseille, France:
European Language Resources Association, June 2022, pp. 10–18.
URL: https://aclanthology.org/2022.gwll-1.3.

[48] Oliver Christ et al. “The IMS Corpus Workbench: Corpus Query Pro-
cessor (CQP): User’s Manual”. In: University of Stuttgart 8 (1999).

[49] Kevin Clark et al. “What Does BERT Look at? An Analysis of BERT’s
Attention”. In: Proc. of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Florence, Italy: ACL, Aug.
2019, pp. 276–286.

https://ceur-ws.org/Vol-3033/paper52.pdf
https://www.aclweb.org/anthology/2020.semeval-1.7/
https://www.aclweb.org/anthology/2020.semeval-1.7/
http://dx.doi.org/10.18653/v1/2023.acl-short.135
https://aclanthology.org/2023.acl-short.135
https://aclanthology.org/2023.acl-short.135
http://dx.doi.org/10.5281/zenodo.10023263
https://doi.org/10.5281/zenodo.10023263
https://doi.org/10.5281/zenodo.10023263
https://aclanthology.org/2022.gwll-1.3


180 Bibliography

[50] Andy Coenen et al. “Visualizing and Measuring the Geometry of
BERT”. In: Proc. of NeurIPS. Red Hook, NY, USA: Curran Associates
Inc., 2019.

[51] Alexis Conneau et al. “Unsupervised Cross-lingual Representation
Learning at Scale”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Ed. by Dan Jurafsky et al. Association for Computational Lin-
guistics, 2020, pp. 8440–8451.
DOI: 10.18653/v1/2020.acl-main.747. URL: https://doi.o
rg/10.18653/v1/2020.acl-main.747.

[52] D. Alan Cruse. “Aspects of the Micro-Structure of Word Meanings”.
In: Polysemy: Theoretical and Computational Approaches. Ed. by Yael
Ravin and Claudia Leacock. Oxford University Press, 2000, pp. 30–
51.

[53] Arsène Darmesteter. La vie des mots étudiée dans leurs significations. C.
Delagrave, 1893.

[54] Thierry Declerck et al. “Lemon: An Ontology-Lexicon model for the
Multilingual Semantic Web.” In: (2010).

[55] Marco Del Tredici, Malvina Nissim, and Andrea Zaninello. “Tracing
metaphors in time through self-distance in vector spaces”. English.
In: CEUR Workshop Proceedings. 3rd Italian Conference on Computa-
tional Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of Nat-
ural Language Processing and Speech Tools for Italian, EVALITA 2016
; Conference date: 05-12-2016 Through 07-12-2016. 2016.

[56] Quentin Dénigot and Heather Burnett. “Dogwhistles as Identity-
based interpretative variation”. In: Proceedings of the Probability and
Meaning Conference (PaM 2020). Gothenburg: Association for Compu-
tational Linguistics, June 2020, pp. 17–25. URL: https://aclantho
logy.org/2020.pam-1.3.

[57] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: CoRR abs/1810.04805
(2018). arXiv: 1810.04805. URL: http://arxiv.org/abs/18
10.04805.

[58] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proc. of NAACL-HLT. ACL,
June 2019, pp. 4171–4186.

http://dx.doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.pam-1.3
https://aclanthology.org/2020.pam-1.3
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


Bibliography 181

[59] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers). Minneapolis, Minnesota: Association for Computational Lin-
guistics, June 2019, pp. 4171–4186.
DOI: 10.18653/v1/N19-1423. URL: https://www.aclweb.org
/anthology/N19-1423.

[60] Charles Du Fresne Du Cange et al. Glossarium mediæet infimælatinitatis.
Niort: L. Favre, 1883-1887.

[61] Haim Dubossarsky et al. “Time-Out: Temporal Referencing for Robust
Modeling of Lexical Semantic Change”. In: Proceedings of the 57th Con-
ference of the Association for Computational Linguistics, ACL 2019, Volume
1: Long Papers. Ed. by Anna Korhonen, David R. Traum, and Lluís
Màrquez. Florence, Italy: Association for Computational Linguistics,
pp. 457–470.
DOI: 10.18653/v1/p19-1044. URL: https://doi.org/10.186
53/v1/p19-1044.

[62] Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap.
Springer, 1993.
ISBN: 978-1-4899-4541-9.
DOI: 10.1007/978-1-4899-4541-9. URL: https://doi.org/1
0.1007/978-1-4899-4541-9.

[63] Lisa Ehrlinger and Wolfram Wöß. “Towards a Definition of Knowl-
edge Graphs”. In: Joint Proceedings of the Posters and Demos Track of the
12th International Conference on Semantic Systems - SEMANTiCS2016
and the 1st International Workshop on Semantic Change & Evolving Se-
mantics (SuCCESS’16) co-located with the 12th International Conference
on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September
12-15, 2016. Ed. by Michael Martin, Martí Cuquet, and Erwin Folmer.
Vol. 1695. CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL:
http://ceur-ws.org/Vol-1695/paper4.pdf.

[64] Kawin Ethayarajh. “How Contextual are Contextualized Word Rep-
resentations? Comparing the Geometry of BERT, ELMo, and GPT-2
Embeddings”. In: Proc. of EMNLP-IJCNLP. Hong Kong, China: ACL,
Nov. 2019, pp. 55–65.

[65] Ludwig Fahrmeir et al. Regression. Springer, 2007.

http://dx.doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://dx.doi.org/10.18653/v1/p19-1044
https://doi.org/10.18653/v1/p19-1044
https://doi.org/10.18653/v1/p19-1044
http://dx.doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
http://ceur-ws.org/Vol-1695/paper4.pdf


182 Bibliography

[66] Christiane Fellbaum, ed. WordNet: An Electronic Lexical Database. Cam-
bridge, MA: MIT Press, 1998.

[67] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Cam-
bridge, MA: MIT Press, 1998. URL: https://mitpress.mit.ed
u/9780262561167/.

[68] Stefano Ferilli. “Integration Strategy and Tool between Formal Ontol-
ogy and Graph Database Technology”. In: Electronics 10.21 (2021).
ISSN: 2079-9292.
DOI: 10.3390/electronics10212616. URL: https://www.mdp
i.com/2079-9292/10/21/2616.

[69] Stefano Ferilli and Domenico Redavid. “The GraphBRAIN system
for knowledge graph management and advanced fruition”. In: Foun-
dations of Intelligent Systems: 25th International Symposium, ISMIS
2020, Graz, Austria, September 23–25, 2020, Proceedings. Springer. 2020,
pp. 308–317.

[70] Stefano Ferilli, Domenico Redavid, and Davide Di Pierro. “Holistic
graph-based document representation and management for open sci-
ence”. In: International Journal on Digital Libraries (2022), pp. 1–23.

[71] J. R. Firth. “A synopsis of linguistic theory 1930-55.” In: Studies in lin-
guistic analysis 1952-59 (1957), pp. 1–32.

[72] Alexandre François. “Trees, waves and linkages”. In: The Routledge
Handbook of Historical Linguistics (2015), p. 161.

[73] Greta Franzini et al. “Nunc Est Aestimandum: Towards an Evaluation
of the Latin WordNet”. In: Proceedings of the Sixth Italian Conference
on Computational Linguistics. Bari: Accademia University Press, Nov.
2019.
DOI: 10.5281/zenodo.3518774. URL: https://doi.org/10.5
281/zenodo.3518774.

[74] Nikhil Garg et al. “Word embeddings quantify 100 years of gender
and ethnic stereotypes”. In: Proceedings of the National Academy of Sci-
ences 115.16 (2018), E3635–E3644.

[75] Aina Garí Soler and Marianna Apidianaki. “Let’s Play Mono-Poly:
BERT Can Reveal Words’ Polysemy Level and Partitionability into
Senses”. In: Transactions of the Association for Computational Linguistics
9 (2021), pp. 825–844.

https://mitpress.mit.edu/9780262561167/
https://mitpress.mit.edu/9780262561167/
http://dx.doi.org/10.3390/electronics10212616
https://www.mdpi.com/2079-9292/10/21/2616
https://www.mdpi.com/2079-9292/10/21/2616
http://dx.doi.org/10.5281/zenodo.3518774
https://doi.org/10.5281/zenodo.3518774
https://doi.org/10.5281/zenodo.3518774


Bibliography 183

DOI: 10.1162/tacl_a_00400. URL: https://aclanthology.o
rg/2021.tacl-1.50.

[76] Dirk Geeraerts, Caroline Gevaert, and Dirk Speelman. “Current meth-
ods in historical semantics”. In: Current methods in historical semantics
(2012). Ed. by Kathryn Allan and Justyna Robinson, pp. 73–109.

[77] F. Ginter and J. Kanerva. “Fast Training of word 2 vec Representations
Using N-gram Corpora”. In: (2014). URL: https://www2.lingfil
.uu.se/SLTC2014/abstracts/sltc2014_submission_27.p

df.

[78] Mario Giulianelli et al. “Interpretable Word Sense Representations via
Definition Generation: The Case of Semantic Change Analysis”. In:
Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Ed. by Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for
Computational Linguistics, July 2023, pp. 3130–3148.
DOI: 10.18653/v1/2023.acl-long.176. URL: https://aclan
thology.org/2023.acl-long.176.

[79] Yoav Goldberg and Jon Orwant. “A Dataset of Syntactic-Ngrams over
Time from a Very Large Corpus of English Books”. In: Atlanta, Georgia,
USA (2013), p. 241.

[80] Hila Gonen et al. “Simple, Interpretable and Stable Method for De-
tecting Words with Usage Change across Corpora”. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, July 2020, pp. 538–
555.
DOI: 10.18653/v1/2020.acl-main.51. URL: https://www.ac
lweb.org/anthology/2020.acl-main.51.

[81] Yue Guan et al. “How Far Does BERT Look At: Distance-based
Clustering and Analysis of BERT’s Attention”. In: Proceedings of the
28th International Conference on Computational Linguistics. Barcelona,
Spain (Online): International Committee on Computational Linguis-
tics, Dec. 2020, pp. 3853–3860.
DOI: 10.18653/v1/2020.coling-main.342. URL: https://ac
lanthology.org/2020.coling-main.342.

http://dx.doi.org/10.1162/tacl_a_00400
https://aclanthology.org/2021.tacl-1.50
https://aclanthology.org/2021.tacl-1.50
https://www2.lingfil.uu.se/SLTC2014/abstracts/sltc2014_submission_27.pdf
https://www2.lingfil.uu.se/SLTC2014/abstracts/sltc2014_submission_27.pdf
https://www2.lingfil.uu.se/SLTC2014/abstracts/sltc2014_submission_27.pdf
http://dx.doi.org/10.18653/v1/2023.acl-long.176
https://aclanthology.org/2023.acl-long.176
https://aclanthology.org/2023.acl-long.176
http://dx.doi.org/10.18653/v1/2020.acl-main.51
https://www.aclweb.org/anthology/2020.acl-main.51
https://www.aclweb.org/anthology/2020.acl-main.51
http://dx.doi.org/10.18653/v1/2020.coling-main.342
https://aclanthology.org/2020.coling-main.342
https://aclanthology.org/2020.coling-main.342


184 Bibliography

[82] Pascal Mark Gygax et al. “A Language Index of Grammatical Gender
Dimensions to Study the Impact of Grammatical Gender on the Way
We Perceive Women and Men”. In: Frontiers in Psychology 10 (2019),
p. 1604.
ISSN: 1664-1078.
DOI: 10.3389/fpsyg.2019.01604. URL: https://www.fronti
ersin.org/article/10.3389/fpsyg.2019.01604.

[83] Janosch Haber and Massimo Poesio. “Patterns of Polysemy and
Homonymy in Contextualised Language Models”. In: Findings of the
Association for Computational Linguistics: EMNLP 2021. Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 2663–2676.
DOI: 10.18653/v1/2021.findings-emnlp.226. URL: https:
//aclanthology.org/2021.findings-emnlp.226.

[84] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality Re-
duction by Learning an Invariant Mapping”. In: 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR
2006), 17-22 June 2006, New York, NY, USA. IEEE Computer Society,
2006, pp. 1735–1742.
DOI: 10.1109/CVPR.2006.100. URL: https://doi.org/10.11
09/CVPR.2006.100.

[85] Thomas Haider and Steffen Eger. “Semantic Change and Emerging
Tropes In a Large Corpus of New High German Poetry”. In: Proceed-
ings of the 1st International Workshop on Computational Approaches to
Historical Language Change. Florence, Italy: Association for Computa-
tional Linguistics, Aug. 2019, pp. 216–222.
DOI: 10.18653/v1/W19-4727. URL: https://aclanthology.o
rg/W19-4727.

[86] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. “Diachronic
word embeddings reveal statistical laws of semantic change”. In: 54th
Annual Meeting of the Association for Computational Linguistics, ACL
2016 - Long Papers. Vol. 3. May 2016, pp. 1489–1501.
ISBN: 9781510827585.
DOI: 10.18653/v1/p16-1141. arXiv: 1605.09096. URL: http:
//arxiv.org/abs/1605.09096.

http://dx.doi.org/10.3389/fpsyg.2019.01604
https://www.frontiersin.org/article/10.3389/fpsyg.2019.01604
https://www.frontiersin.org/article/10.3389/fpsyg.2019.01604
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.226
https://aclanthology.org/2021.findings-emnlp.226
https://aclanthology.org/2021.findings-emnlp.226
http://dx.doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
http://dx.doi.org/10.18653/v1/W19-4727
https://aclanthology.org/W19-4727
https://aclanthology.org/W19-4727
http://dx.doi.org/10.18653/v1/p16-1141
https://arxiv.org/abs/1605.09096
http://arxiv.org/abs/1605.09096
http://arxiv.org/abs/1605.09096


Bibliography 185

[87] Michael Hanna and David Mareček. “Analyzing BERT’s Knowledge
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[194] Pavel Rychlỳ. “A Lexicographer-Friendly Association Score”. In:
RASLAN 2008 Recent Advances in Slavonic Natural Language Processing
(2008), p. 6.

[195] Alma Sabatini. “Occupational titles in Italian: Changing the sexist us-
age”. In: Sprachwandel und feministische Sprachpolitik: Internationale Per-
spektiven. Springer, 1985, pp. 64–75.

http://dx.doi.org/10.18653/v1/2020.coling-main.90
https://aclanthology.org/2020.coling-main.90
https://aclanthology.org/2020.coling-main.90
http://dx.doi.org/10.1145/3488560.3498529
https://doi.org/10.1145/3488560.3498529
https://doi.org/10.1145/3488560.3498529
http://dx.doi.org/10.1145/3178876.3185999
https://doi.org/10.1145/3178876.3185999
https://doi.org/10.1145/3178876.3185999


Bibliography 199

[196] Magnus Sahlgren. “An introduction to random indexing”. In: Proceed-
ings of the Methods and Applications of Semantic Indexing Workshop at the
7th International conference on Terminology and Knowledge Engineering,
TKE 2005. Copenhagen, Denmark, Aug. 2005.

[197] Flora Sakketou et al. “Investigating User Radicalization: A Novel
Dataset for Identifying Fine-Grained Temporal Shifts in Opinion”. In:
Proceedings of the Thirteenth Language Resources and Evaluation Confer-
ence. Marseille, France: European Language Resources Association,
June 2022, pp. 3798–3808. URL: https://aclanthology.org/2
022.lrec-1.405.

[198] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter”. In: arxiv (2019).

[199] Sascha Schimke, Claus Vielhauer, and Jana Dittmann. “Using adapted
levenshtein distance for on-line signature authentication”. In: Proceed-
ings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004. Vol. 2. IEEE. 2004, pp. 931–934.

[200] Dominik Schlechtweg, Sabine Schulte im Walde, and Stefanie Eck-
mann. “Diachronic Usage Relatedness (DURel): A Framework for the
Annotation of Lexical Semantic Change”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT, Volume 2
(Short Papers). Ed. by Marilyn A. Walker, Heng Ji, and Amanda Stent.
New Orleans, Louisiana, USA: Association for Computational Lin-
guistics, June 2018, pp. 169–174.
DOI: 10.18653/v1/n18-2027. URL: https://doi.org/10.186
53/v1/n18-2027.

[201] Dominik Schlechtweg et al. “A Wind of Change: Detecting and Eval-
uating Lexical Semantic Change across Times and Domains”. In: Pro-
ceedings of the 57th Conference of the Association for Computational Lin-
guistics, ACL 2019, Volume 1: Long Papers. Ed. by Anna Korhonen,
David R. Traum, and Lluís Màrquez. Florence, Italy: Association for
Computational Linguistics, July 2019, pp. 732–746.
DOI: 10.18653/v1/p19-1072. URL: https://doi.org/10.186
53/v1/p19-1072.

[202] Dominik Schlechtweg et al. “DWUG: A large Resource of Diachronic
Word Usage Graphs in Four Languages”. In: Annual Conference of the
North American Chapter of the Association for Computational Linguistics,

https://aclanthology.org/2022.lrec-1.405
https://aclanthology.org/2022.lrec-1.405
http://dx.doi.org/10.18653/v1/n18-2027
https://doi.org/10.18653/v1/n18-2027
https://doi.org/10.18653/v1/n18-2027
http://dx.doi.org/10.18653/v1/p19-1072
https://doi.org/10.18653/v1/p19-1072
https://doi.org/10.18653/v1/p19-1072


200 Bibliography

(NAACL-HLT 2021). Mexico City, Mexico: Association for Computa-
tional Linguistics, 2021.

[203] Dominik Schlechtweg et al. “DWUG DE: Diachronic Word Usage
Graphs for German”. Version 2.3.0. In: (Dec. 2022).
DOI: 10.5281/zenodo.7441645. URL: https://doi.org/10.5
281/zenodo.7441645.

[204] Dominik Schlechtweg et al. “DWUG EN: Diachronic Word Usage
Graphs for English”. Version 2.0.1. In: (Dec. 2022).
DOI: 10.5281/zenodo.7387261. URL: https://doi.org/10.5
281/zenodo.7387261.

[205] Dominik Schlechtweg et al. “SemEval-2020 Task 1: Unsupervised
Lexical Semantic Change Detection”. In: Proceedings of the Fourteenth
Workshop on Semantic Evaluation, SemEval@COLING2020. Ed. by Au-
rélie Herbelot et al. Barcelona (online): International Committee for
Computational Linguistics, Dec. 2020, pp. 1–23. URL: https://www
.aclweb.org/anthology/2020.semeval-1.1/.

[206] Bess Schrader. What’s the Difference Between an Ontology and a Knowl-
edge Graph? (White Paper). Tech. rep. Enterprise Knowledge, (con-
sulted September 8, 2021). URL: https://enterprise-knowle
dge.com/whats-the-difference-between-an-ontology-a

nd-a-knowledge-graph/.

[207] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine
Translation of Rare Words with Subword Units”. In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Ed. by Katrin Erk and Noah A. Smith.
Berlin, Germany: Association for Computational Linguistics, Aug.
2016, pp. 1715–1725.
DOI: 10.18653/v1/P16-1162. URL: https://aclanthology.o
rg/P16-1162.

[208] Sofia Serrano and Noah A. Smith. “Is Attention Interpretable?” In:
Proc. of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics,
July 2019, pp. 2931–2951.
DOI: 10.18653/v1/P19-1282. URL: https://aclanthology.o
rg/P19-1282.

http://dx.doi.org/10.5281/zenodo.7441645
https://doi.org/10.5281/zenodo.7441645
https://doi.org/10.5281/zenodo.7441645
http://dx.doi.org/10.5281/zenodo.7387261
https://doi.org/10.5281/zenodo.7387261
https://doi.org/10.5281/zenodo.7387261
https://www.aclweb.org/anthology/2020.semeval-1.1/
https://www.aclweb.org/anthology/2020.semeval-1.1/
https://enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
https://enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
https://enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
http://dx.doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
http://dx.doi.org/10.18653/v1/P19-1282
https://aclanthology.org/P19-1282
https://aclanthology.org/P19-1282


Bibliography 201

[209] Philippa Shoemark et al. “Room to Glo: A systematic comparison of
semantic change detection approaches with word embeddings”. In:
Proc. of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational Linguis-
tics. 2020, pp. 66–76.

[210] Melanie Siegel and Francis Bond. “OdeNet: Compiling a German-
WordNet from other Resources”. In: Proceedings of the 11th Global
Wordnet Conference. University of South Africa (UNISA): Global
Wordnet Association, Jan. 2021, pp. 192–198. URL: https://acla
nthology.org/2021.gwc-1.22.

[211] Borsci Simone, Boscarol Maurizio, Cornero Alessandra, et al. Il Pro-
tocollo eGLU 2.1. Il Protocollo eGLU-M. Come realizzare test di usabilità
semplificati per i siti web ei servizi online delle PA. Glossario dell’usabilità.
2015.

[212] Gustaf Stern. “Meaning and change of meaning; with special refer-
ence to the English language.” In: (1931).

[213] Milan Straka. “UDPipe 2.0 Prototype at CoNLL 2018 UD Shared
Task”. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. Brussels, Belgium: Associ-
ation for Computational Linguistics, 2018, pp. 197–207.
DOI: 10.18653/v1/K18-2020. URL: https://www.aclweb.org
/anthology/K18-2020.

[214] Milan Straka, Jan Hajic, and Jana Straková. “UDPipe: Trainable
Pipeline for Processing CoNLL-U Files Performing Tokenization,
Morphological Analysis, POS Tagging and Parsing”. In: Proceedings
of the Tenth International Conference on Language Resources and Evalu-
ation LREC 2016. Ed. by Nicoletta Calzolari et al. Portorož,Slovenia:
European Language Resources Association (ELRA), May 2016. URL:
http://www.lrec-conf.org/proceedings/lrec2016/summ

aries/873.html.

[215] Morris Swadesh. “Salish internal relationships”. In: International Jour-
nal of American Linguistics 16.4 (1950), pp. 157–167.

[216] Nina Tahmasebi, Lars Borin, and Adam Jatowt. “Survey of Computa-
tional Approaches to Lexical Semantic Change”. In: 1st International
Workshop on Computational Approaches to Historical Language Change

https://aclanthology.org/2021.gwc-1.22
https://aclanthology.org/2021.gwc-1.22
http://dx.doi.org/10.18653/v1/K18-2020
https://www.aclweb.org/anthology/K18-2020
https://www.aclweb.org/anthology/K18-2020
http://www.lrec-conf.org/proceedings/lrec2016/summaries/873.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/873.html


202 Bibliography

2019 (2018). arXiv: 1811.06278. URL: http://arxiv.org/abs
/1811.06278.

[217] Nina Tahmasebi and Thomas Risse. “Finding IndividualWord Sense
Changes and their Delay in Appearance”. In: International Conference
Recent Advances in Natural Language Processing. Assoc. for Computa-
tional Linguistics Bulgaria, Nov. 2017, pp. 741–749.
DOI: 10.26615/978-954-452-049-6_095.

[218] Nina Tahmasebi et al. “DWUG SV: Diachronic Word Usage Graphs
for Swedish”. Version 2.0.1. In: (Dec. 2022).
DOI: 10.5281/zenodo.7389506. URL: https://doi.org/10.5
281/zenodo.7389506.

[219] Xuri Tang. “A state-of-the-art of semantic change computation”. In:
Natural Language Engineering 24.5 (Sept. 2018), pp. 649–676.
ISSN: 14698110.
DOI: 10.1017/S1351324918000220.

[220] Wayne A Taylor. Change-point analysis: a powerful new tool for detecting
changes.

[221] Deutsches Textarchiv. Grundlage für ein Referenzkorpus der
neuhochdeutschen Sprache. Herausgegeben von der Berlin-
Brandenburgischen Akademie der Wissenschaften. http : / / www . d
eutschestextarchiv.de/. 2017.

[222] Thesaurusbüro München Internationale Thesaurus-Kommission, ed.
Thesaurus linguae latinae. Berlin: Mouton de Gruyter, 1900–.

[223] Elizabeth Closs Traugott. “Semantic change: Bleaching, strengthen-
ing, narrowing, extension”. In: Encyclopedia of Language and Linguis-
tics. Elsevier, 2006.

[224] Elizabeth Closs Traugott and Richard B. Dasher. Regularity in semantic
change. Cambridge: Cambridge University Press, 2001.

[225] Rocco Tripodi et al. “Tracing Antisemitic Language Through Di-
achronic Embedding Projections: France 1789-1914”. In: Proceedings of
the 1st International Workshop on Computational Approaches to Historical
Language Change. Florence, Italy: Association for Computational Lin-
guistics, Aug. 2019, pp. 115–125.
DOI: 10.18653/v1/W19-4715. URL: https://aclanthology.o
rg/W19-4715.

https://arxiv.org/abs/1811.06278
http://arxiv.org/abs/1811.06278
http://arxiv.org/abs/1811.06278
http://dx.doi.org/10.26615/978-954-452-049-6_095
http://dx.doi.org/10.5281/zenodo.7389506
https://doi.org/10.5281/zenodo.7389506
https://doi.org/10.5281/zenodo.7389506
http://dx.doi.org/10.1017/S1351324918000220
http://www.deutschestextarchiv.de/
http://www.deutschestextarchiv.de/
http://dx.doi.org/10.18653/v1/W19-4715
https://aclanthology.org/W19-4715
https://aclanthology.org/W19-4715


Bibliography 203

[226] Adam Tsakalidis et al. “Mining the UK Web Archive for Semantic
Change Detection”. In: Proceedings of the International Conference on Re-
cent Advances in Natural Language Processing, RANLP 2019, Varna, Bul-
garia, September 2-4, 2019. Ed. by Ruslan Mitkov and Galia Angelova.
INCOMA Ltd., 2019, pp. 1212–1221.
DOI: 10.26615/978-954-452-056-4\_139. URL: https://doi
.org/10.26615/978-954-452-056-4\_139.

[227] S. Ullmann. The Principles of Semantics. Glasgow University publica-
tions. Jackson, 1957. URL: https://books.google.it/books?id
=YOZYAAAAMAAJ.

[228] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. Ed. by Isabelle Guyon et al. 2017, pp. 5998–6008. URL: ht
tps://proceedings.neurips.cc/paper/2017/hash/3f5ee

243547dee91fbd053c1c4a845aa-Abstract.html.
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