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Abstract

In this chapter1 we provide an overview of computational modeling for semantic change using large and

semi-large textual corpora. We aim to provide a key for the interpretation of relevant methods and evaluation

techniques, and also provide insights into important aspects of the computational study of semantic change.

We discuss the pros and cons of different classes of models with respect to the properties of the data from

which one wishes to model semantic change, and which avenues are available to evaluate the results.

1 Introduction

Semantic change concerns change at the meaning level of a word. Examples are plentiful, and concern rapid

change as well as slow, gradual change. Some changes are permanent, while others have a limited lifespan and

disappear after having trended for a time. Regardless, changes in word meaning affect our language and the way

we use our words to express ourselves. What is more, semantic change has ripple effects into lexical change;

when one word gains a new sense, another word may become obsolete, or they may split the semantic space

between them [Lehrer, 1985, Anttila, 1989, Xu and Kemp, 2015]. For example, the words skarp and vass in

Swedish are two synonyms for the English word “sharp” that take different objects, like skarp syn “sharp eye

sight” and vass kniv “sharp knife”.

Changes in our language often reflect changes in our everyday lives, societies, and culture. There are thus

many reasons why the study of semantic change is important. With the introduction of powerful computers

and the increasing availability of digital, diachronic texts, we have seen the rise of the computational study of

semantic change in the past two decades.

Traditional research into semantic change lists many categories of change, as well as reasons for their

occurrence, but in this chapter, we will not (a) explain what semantic change is, (b) explain how it can be

divided into categories, or (c) dwell on the reasons why it occurs. Those topics are addressed in the excellent

chapter on semantic change in this volume. The focus on this chapter is on computational modeling of semantic

change. While semantic change is often studied over long time spans, even ephemeral semantic changes are

important objects of study. We are often unaware of all the ongoing changes in domains where we typically

do not operate. For example, youth slang is unknown territory for most people (who are either out of the age

range or without direct contact with someone in the age range). For this reason, we will consider both long- and

short-term semantic changes in this chapter.

Work in the field of computational linguistics is motivated both by the desire to provide data-driven lin-

guistic knowledge and by the desire to apply an interesting modeling tool to a complex, temporally evolving

data type. The work may also be motivated by an interest in temporal information retrieval, and often by its

potential as a computational tool for lexicography. Recently, we have also been seeing work that applies com-

putational modeling of semantic change to problems in other non-linguistic text-based research fields, such as

history [Bizzoni et al., 2020], medicine [Vylomova et al., 2019], and political science [Marjanen et al., 2019,

Tripodi et al., 2019].

Detecting semantic change often relies on methods that automatically encode meaning from raw text, that

is, they are based on representations of meaning. The models currently used to encode meaning for studying

semantic change are unsupervised and do not make use of preexisting knowledge bases (such as dictionaries or

lexicons) nor do they involve any human input. The basis for our work is thus textual data and a computational

method to extract information about words and their meaning from the text and so create meaning represen-

tations, on the basis of which we can detect semantic change. It is thus extremely important how we extract

1This chapter is submitted to Routledge Handbook of Historical Linguistics, 2nd Edition
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meaning from text, and how we choose to represent it. Current models of extracting meaning from text work

on three different levels: the token, sense, and type levels. The first level (token) is that of individual word

occurrences. These occurrences are often called contexts and are defined either as a fixed number of words

around a target word, or a sentence, or other larger text unit, in which the target word occurs. Most active

research is currently being carried out at this level. The second level is that of sense, where we either try to

directly model a word’s senses, for example with the help of word sense induction or topic modeling, or group

token-level representations into sense-level representations. There is ongoing work on the latter, but there is

currently little active research on modeling senses directly. We will therefore not discuss this level in much

detail in this chapter. Finally, the third level is the word level (type) representations. This level collapses all

information about a word into one, and results in an average representation of all the meanings of a word that

appear in different contexts. The first major push of computational semantic change research was done using

type-based models, and only later were token and sense level models of meaning revisited.

What does it mean to model semantic change computationally? The answer depends on which question

one sets out to answer. When it comes to semantic change research, there are three main research formulations:

1. The first research formulation relates to modeling semantic change as it is exhibited in a specific cor-

pus. We are interested in what happens to a word as used in a specific corpus, as opposed to its use in

general; thus, we limit the textual material that we use. We allow semantic change to be found only on the

words present in this material, and accept only those changes that are apparent in this specific material.

The fact that a word may have changed differently outside of the corpus does not matter.

2. The second research formulation is significantly broader and aims to model language in general: Have

our words changed their meaning? We study this by using different textual sources as a proxy for the

world around us and language as a whole. This approach is what is generally understood when we speak

of studying lexical semantic change. We want to contribute to the general knowledge of our language, to

dictionaries, historical linguistic studies, or to specify laws of semantic change (whether language specific

or language agnostic).

3. A third research formulation (so far hypothetical) can be seen as a middle path between the two above.

This formulation concerns contrasting the language in one corpus with contemporary general language:

Does a specific author, or community, exhibit a different language use from the general population?

In this chapter, we aim to provide a key for the interpretation of relevant methods, studies, and evaluation

techniques, as well as provide insights into important aspects of the computational study of semantic change.

We will focus on computational modeling of semantic change from large and semi-large textual corpora. Most

of the work done in this field so far can be considered as a proof of concept, showing that computational meth-

ods can be indeed applied to corpora to automatically detect semantic change. Until recently, there have been

no common standards for how to choose and preprocess data, perform experiments, or evaluate and present re-

sults. However, researchers are slowly reaching consensus on some best practices for modeling, data collection,

experimentation, and evaluation. The time has come to take larger steps towards data-driven linguistic inquiry,

and to use computational modeling of semantic change to model societal and cultural change.

2 Computational models of meaning

To date, several classes of methods with different ways of modeling word meaning have been used to tackle

semantic change detection. These classes follow the general trend in computational linguistics and natural lan-

guage processing (NLP) and range from word sense induction-based (clustering) methods [Tahmasebi, 2013,

Mitra et al., 2015], to topic models [Lau et al., 2014, Frermann and Lapata, 2016] and, most prominently now,

distributional semantic methods. These methods operate at word level (all information about a word is com-

pressed into one representation), sense level (where the information about a word is divided between different

senses), or token level (all information about a word is divided into representations of each time it is used).

The focus of this section will be on distributional semantic models that can be divided into three separate

groups: (1) explicit count-based models (Section 2.2), (2) static embedding models (Section 2.3.2) and, (3)

contextualized embedding models (Section 2.3.3). The aim of distributional semantic models is to represent

each word with one or several vectors, such that the vectors are distributed in the semantic vector space. We call

these vector representations, or just representations for each word. Because words are represented as vectors,
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we can apply vector arithmetic, that is, we can add and subtract vectors from each other. This property allows

us to investigate relations between words such as the relation between countries and their capitals or between

singular and plural forms of words. However, the most important property of these models is that they enable

us to capture the meaning of a word by operationalizing the distributional hypothesis.

2.1 Theoretical background

Over the last 15 years there has been an immense and growing interest and research focus on developing models

of computational meaning. These models differ significantly in terms of architecture (e.g., type of neural net-

work design used, if any), computational complexity (i.e., what kind of information the model is trying to learn)

and scope (e.g., how much textual data is used for training). These models represent significant technological

advances. However, despite huge differences between different models of computational meaning, they all rely

on the same theoretical foundation, namely the distributional hypothesis (henceforth DH).

The DH suggests that we can infer the meaning of words by systematically analyzing the context in which

they are used. For example, if we do not know the word cat, or what object it signifies in the real world, we

can form a pretty good guess about its meaning when we read all the sentences (i.e., context of usage) in which

the word cat appears: “a cat is meowing”, “the cat drinks milk”, “I took the cat to the vet”. Despite its relative

simplicity, the DH provides the basis of the Artificial Intelligence revolution we have seen in the last decade, by

enabling computational models to carry out more and more complicated tasks like machine translation, dialog

systems, and machine summarization that previously required human-level text understanding.

The DH was advanced almost simultaneously during the 1950s by Zellig Harris, an American semanticist

and mathematician who argued that “similarity of meaning equals similarity of usage” (1954), and by the

British linguist John F. Firth who coined the more famous phrase “You shall know a word by the company it

keeps.” Importantly, DH has its roots in Saussurean Linguistic Structuralism, and is inline with psycholinguistic

accounts of how humans learn and represent meaning [Tahmasebi et al., Brunila and LaViolette, 2022].

For many years it was nearly impossible to model meaning based on the DH because correctly establishing

a word’s usage pattern required huge amounts of text to be processed (i.e., a large and representative sample of

the word’s usage contexts, multiplied by the number of words in the vocabulary). In recent years however, the

size of digitized textual resources has increased exponentially (and now also include many more languages). At

the same time there have been unprecedented leaps in computational power and algorithms that process text in

huge quantities. This combination has driven remarkable advancements in DH-inspired computational models

of meaning described in this chapter.

2.2 Count-based models of meaning

The first DH inspired models were straightforward and based on the idea of counting frequencies of occurrence.

For each target word, the models count how many times other words appeared (co-occurred) in the context of

the target word in a large textual corpus. A context contains other words in close proximity to the target word.

It can be a fixed number of words before and after the target word (a window), the whole sentence, or the whole

paragraph in which the target word occurs. After having processed all target words in a corpus (typically, target

words are chosen as the K most frequent nouns or verbs), the result is a list of n numbers per target word w,

mathematically referred to as a vector of n dimensions. Each element in the list/vector (i.e., element i ∈ 1 . . . , n)

represents the number of times a word i appears in the context of the target word w. Each list/vector of numbers

represents a word’s meaning.

It is easy to show how these vector representations, ultimately one vector for each word, capture meaning

in accordance with the DH. Let us consider, for example, the similarity between the vectors of “cat” and “dog”.

The co-occurrence vectors of these two words will be very similar with respect to certain elements in the vectors,

because the same words tend to co-occur with both cat and dog (e.g., “play”, “pet”, or “veterinarian”). They

are clearly quite different from other words like “car” (“speed”, “gear”, “garage”), or “pray” (“god”, “worship”,

“service”, “rabbi”, “mosque”). These count-based models can be used to create representations of a word as a

whole (as described above), that is, type representations (see Table 1 for an illustrative example).2 In this case,

the vector is a first order co-occurrence vector which means that each element in the vector corresponds to how

often that word co-occurs with the target word in the corpus. This representation of the target word conflates all

the different meanings, and can be seen as some sort of an average meaning representation where the sense that

occurs more frequently has a higher effect on the representation of the word.

2Count-based models can be used to create token representations as well, see Schütze [1998] for an example, but these have not been
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Table 1: Illustration for a co-occurance matrix with rows representing target words, and columns representing

context words. Numerical value represent raw counts.
and for garage gear god mosque of pet play rabbi service speed that the vet worship

Cat 114 58 757 451 224 424 120

Dog 98 44 5 495 890 450 21 859 1434 90

Car 265 78 179 67 46 1 18 90 157 650 990 1

Pray 89 22 170 45 700 2 10 117 240 56 1930 148

2.2.1 Statistical processing of co-occurring patterns

Critical examination of the data (see Table 1) shows that non-content words (e.g., stop words, function words,

and prepositions) have high co-occurrence counts with almost all the words in the vocabulary. For example,

words like “the”, “of”, “for”, “and”, which are among the most frequent words in English appear often with

most of the words in the lexicon. However, these high frequency words contribute very little to the meaning of

any word they co-occur with.

Statistical independence scores are used to counter the effect of the most frequent words in the language

which, as said, are rather meaningless in the lexical sense. These scores enable capturing meaningful informa-

tion from the co-occurrence patterns, rather than from the raw counts.3 One of the first methods developed was

PMI (PointWise Mutual Information). PMI answers the following question: For a given pair of co-occurring

words, how often do they appear together (in the context of one another) relative to their overall frequency? If,

for example, “cat” has a general probability of .01% in the entire text, and a joint probability of only .011% to

co-occur with the word “the”, then the two words are not strongly associated (i.e., the appearance of “the” in the

text is not a good indication that “cat” will follow it). On the other hand, if “meow” has a general probability

of 0.005% in the text, but a 0.1% joint probability to appear together with “cat”, then it is safe to (statistically)

assume that the two are strongly associated and that when we find “meow”, we will often also find “cat”.

Several variants of PMI exist, as well as other statistical methods to evaluate the “importance” of words (e.g.,

PPMI, tf-idf). However, as they are very similar in spirit to PMI, and we will not discuss them here. Although

more sophisticated methods for vector meaning representation have been developed (see next subsections), PMI

and PPMI still remain popular choices for research because of their simplicity and their interpretable represen-

tations – the strength of the association between each word and its context words is explicitly represented in the

vector representation.

2.3 Predictive models

Predictive models, to which static and contextual embeddings belong, are a group of machine learning algo-

rithms designed to carry out a particular task without explicitly being directed how to do so (i.e., they are not

instructed to count words that co-occur with other words). Such models are typically trained on a very large set

of examples which in our case stem from very large textual corpora. These models learn the meaning of words

directly from text, by training to predict a MASKED word given its context.

[1] The cat <MASK> after I accidentally stepped on his tail.

In the above example, a predictive model will likely predict mewed in place of the masked word. This train-

ing task is called a masked language modeling task and is common to both static and contextualized predictive

models.4

2.3.1 Geometrical interpretation

Predictive models, like count-based ones, aim to create a vector space in which words are represented as vectors

and grouped according to meaning. These spaces, however, unlike the count-based ones, do not have inter-

pretable dimensions. We call these semantic spaces because they are occupied by vectors that represent word

meanings.

explored in semantic change research thus far.
3Stop words can often be filtered out using a simple stop word list that is readily available. However, PMI methods are used to handle

very common words that are not typically found in a stop words lists.
4Despite its simplicity, it is a ubiquitous task, and most NLP models are trained on it (or on its variants), including Large Language

Models.
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We can think of the vector space as a very large room.5 We aim to group words that are semantically similar

close together in this room. This grouping is a simple reflection of DH principles in a geometric space: words

with similar usage context have similar vectors that end up close together in the vector space. For example,

the model aims to get all words relating to food in one region, technical devices in another, and animals in a

third region. The grouping of words in such a vector space tells us that cat is more similar to dog than to pasta,

because cat and dog are located in the same region, while cat and pasta are, for example, in opposite corners.

Often, the models also learn certain relations between categories of words, for example that cat and cats have

the same relative position to each other, as other singular-plural pairs like chair and chairs. We can measure

word similarity by the distance between vectors. We can use well-known distance metrics (like cosine distance

or Euclidean distance) to determine their similarities. The smaller the distance (i.e., the closer the vectors are in

the room), the more similar the vectors, and hence the meanings they represent.

When we start creating a vector space, we do not assume any advance knowledge of what words mean, and

which words are similar to one another. We start the process by throwing all the words into the room at random,

and then we incrementally train our model. Each time a target word w is encountered in a sentence, the vector

corresponding to w (i.e., the vector that represents w’s meaning) takes a small step in the direction suggested by

the context words. How large a step the vector takes in the semantic space, or in which direction it moves, is

determined by how good (or bad) the model was at predicting the correct word in the current masked-language

iteration. If the model errs by a large amount, the size of the step, that is, the correction to its position in the

semantic space, is larger than if the model is more accurate.

Because of this random initialization of the model, some words have to travel only a short distance (as they

happen to have started close to their final region), while other words need to travel a longer distance to reach

their correct region. For a word to travel through the semantic space, it needs to take sufficiently many steps to

the region where its semantically similar friends belong. A step is only taken if a word occurs in the corpus.

Therefore, if a word does not appear frequently enough, it will stop short on its journey and will not reach its

correct region. If too many words remain in the wrong region when training stops, then the space becomes

useless. That is, we cannot trust that word representations are accurate and hence that cat is more similar to dog

than to cutlery or that the relation between singular and plural is preserved for most nouns. On the other hand,

if the process ends successfully, and a sufficient number of words end up in the correct region, we say that the

model has converged.

It is important to note that there is no fixed place where semantically similar words, for example foods or

animals, should always end up. Due to the probabilistic nature of the methods, the words will end up in different

regions each time the algorithm is run. It is therefore the relative position and distance between words in the

semantic space that matters. This property is important when one wants to compare words using vectors trained

over different periods of time. This point will be addressed in Section 3.1.

2.3.2 Static embedding models

Static embedding models are a suite of models whose starting point is a huge set of vectors, one per word.

However, unlike the count-based vectors, each element in the vector corresponds to a learned dimension rather

than another word, and we decide the length of the vectors (typically 50–300 dimensions) without regard to the

size of the vocabulary. These vectors are responsible for two things: 1) they represent the “internal states” of

the learning algorithm that determine how the model reacts to a given input; and 2) they comprise the numerical

basis of the geometrical interpretation we gave above.

Throughout the training process, a model tunes the numbers within each vector, which are called parameters

(these are different from the hyper-parameters described in Section 2.4) so that they will produce the right

output for a certain input. For example, for an input of [1] above, the model would output “mewed”. The

training process itself is very similar to the way we tune a musical instrument – we press a piano key or pluck a

string on a violin, and then adjust the string’s tension (up or down) to produce a more accurate sound in our next

attempt. Predictive models learn the parameters in a very similar way. For every iteration in which they predict

a masked word (in the above example “mewed”, “cried”, “yelled” would be reasonable predictions) they test

whether their prediction was correct, and if not, update the parameters accordingly.

The unique design of static models, with a strict mapping of one vector per word, guarantees that the

parameters related to a specific word are only updated if that particular word appears in a sentence, and remain

unchanged when updating the parameters of other words. Ultimately, these learned parameters constitute the

vector representations of the predictive models that we use to describe the meaning of words.

5A physical room has only three dimensions whereas our spaces are typically 100 to 200 dimensions large. Also our imaginary room

has walls, that is boundaries, which our space does not. Nonetheless, the room analogy can be used for illustrative purposes
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2.3.3 Contextual embedding models

Contextualized embedding models, unlike static models, have no strict mapping between a word and its pa-

rameters (i.e., no one vector per word). During training, all the parameters of the model are updated (in a very

similar manner to the process described above). After training, the parameters of the model are dynamically

used to describe (and predict) a word in each context it appears in. Consequently, contextualized models pro-

duce a token vector, for every instance of a word in the text, on the basis of the context words (typically in the

sentence where the word occurs). As a result, a word is not represented by one vector in the semantic space but

by many (as many vectors as there are instances of the word in the text). Therefore, token-based representation

improves our chances of deriving sense information because words that have multiple senses will have token

vectors in different regions. It means that, at least in theory, the vectors representing all instances of the word

can be separated into classes (e.g. by means of clustering) where each class represents one word sense.

Contextualized models are considered more expressive than static models for two main reasons. The first is

their larger number of parameters (from 10 to a 1,000-fold more parameters) compared to static embeddings.

The second is the design of the underlying neural network. Contextualized models have a funnel-like structure

that looks like layers (cf. to static models that consist of a single layer). The first layer reads the words and

maps them into an embedding space in a very similar way to the static models. Then the output of the first layer

constitutes the input to the next layer, and so on (typically there are at least 12 layers). This design is considered

superior to the design of static models, as it is thought to capture linguistic information at increasing levels of

complexity and abstractness. The parameters of contextualized model are the aggregation of all the parameters

in all the different layers.

Working with contextualized models is done differently than with previous models. Because of their large

number of parameters, training contextualized models requires much more computational resources than pre-

vious model types. Most researchers do not have access to such large resources. As a result, many rely on

pretrained models (i.e., models that were trained by others, and made available online). Current research often

starts with searching for the most suitable pretrained model. One can supplement a pretrained model in a pro-

cess called fine-tuning, which is basically the continuation of the previous training on additional text. This step

can be used to expose the model to text in a new domain (e.g., historical, technical) or train it on a new task,

thus allowing the model to update based on a new type of information. Fine-tuning cannot undo (remove) the

information a model has acquired during earlier stages from the corpus on which it was originally pretrained

on. However, being aware of this problem allows us to adopt strategies that can take the original training corpus

into account. Fine-tuning is considerably quicker than pretraining, and is therefore within the reach of most

research labs.

2.4 Hyper-parameters

Several factors influence the training process and the way meaning is modeled from text. These factors are

controlled by the hyper-parameters of the model (not to be confused with the model’s parameters described

above). Table 2 provides a comparison and overview of common hyper-parameters. For static embeddings,

hyper-parameters should be chosen at training time. Researchers rarely train contextualized models themselves,

but it is important to be aware of the hyper-parameters chosen by the model providers.

Table 2: Hyper-parameters involved in models for meaning

Window size # Epochs Learning rate Minimum Freq. Down Sampling

Count-based +

Static + + + + +

Contextualized + +

The first hyper-parameter is the window size, which determines how many context words a model considers

to the left and right of the target word. As we derive meaning from usage, it is crucial to note that the number

of words considered as context affects the type of linguistic information the model is exposed to. For example,

with a window size of 2, which means two words before and two after the target word, a model will mainly be

exposed to (and learn) syntactic information, and will filter out most of the semantic information that usually

appears in a longer context. However, increasing the window size is only effective up to a certain point. Beyond

that, adding more words will not add to the semantic information and can negatively influence the training time

[Levy and Bullinaria, 1998, Bernier-Colborne and Drouin, 2016].
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Other hyper-parameters determine whether a model will converge, or in the geometric analogy, whether

the word vectors will reach their desired semantic region. Convergence largely depends on whether the model

was sufficiently trained. If it was trained on too few examples, then it is unlikely to converge, and the vector

representations it produces are inaccurate and unreliable. Number of epochs controls how long we train the

model. A single epoch means that the model completes a single pass over all the text, which is often insufficient.

Naturally, if the corpus is small, more passes are required for the model to converge, and vice versa. In addition,

learning rate controls the size of the “steps” with which the model updates its vectors. A higher learning rate

means that words reach their desired region in the semantic space quicker. However, words may overshoot their

correct region, and be unable to make the small adjustments needed to reach their optimal location. On the other

hand, a lower rate may mean that the training process takes an unreasonable amount of time to finish. Naturally,

the learning rate and the number of epochs interact. A model may converge faster (requiring fewer epochs) if

the learning rate is high, albeit with less fine-grained accuracy. In contrast, it takes more epochs for the model

to converge if the learning rate is low.

Together, learning rate and number of epochs control the convergence of the model as a whole. However, if

we are interested in whether certain words have converged or not, we must consider the frequency with which

they appear in the text. High frequency words will be updated more often than low frequency words, and

are hence expected to converge faster, that is, they reach the desired region in semantic space faster than low

frequency words [Dubossarsky et al., 2017]. Minimum frequency in Table 2 tells the model to ignore words

below a certain frequency as their vectors are not expected to converge anyway.6 By contrast, down sampling

tells the model to occasionally ignore some high frequency words in proportion to their frequency (i.e., ultra-

high frequency words will be ignored the most), because these words appear often enough to converge, and

updating them further will not generate better vectors, and will just extend the training time unnecessarily.

3 The computational study of semantic change

To detect semantic change we employ a simple extension of the DH: If meaning is derived by analyzing the

usage context of words, which are encoded in their vector representations, then changes to these representations

must signify changes to their usage contexts and, by extension, their meanings. Put differently, after a model

has converged, the vectors that represent the meaning of words occupy different areas in the semantic space

depending on their meaning. Therefore, if a word has changed its meaning, so will its vector representation,

and as a result the word will have moved to a different region of the space.

In order to measure these changes we need to compare a word at two or more time points. This can be done

in one of two ways:

First, we can look at a single word and compute the size of its displacement between two time points (the

distance it traversed in the space) by comparing its vector representation in different time periods.

Secondly, we can look at a word’s position relative to its surrounding words (nearest neighbors). When

words are compared in this way, it is because these neighbors are assumed to represent the category of meaning

the word belongs to. In this case, we compute the distances of a word to its K-nearest neighboring words, and

evaluate how these distances change between two time periods. Usually a standard distance function such as

cosine distance7 is used to measure the distance, and we assume that larger distances between time periods

correspond to greater changes in meaning.

It is important to note that the method we use for detecting and analyzing semantic change is dependent

on, and therefore limited by, the capacity of the computational method we choose to capture and represent

meaning. In other words, if the model we use is unable to capture meaning accurately, we will inevitably fail to

detect semantic change. Likewise, if a model captures only certain aspects of meaning, for example, syntactic

information, we will fail to detect change in other aspects.

3.1 Computationally detecting semantic change

The task of semantic change detection is defined according to our choice of computational model of meaning

(see Section 3). However, all models share a few steps: First the historical data is divided into non-overlapping

6It is advised to use a minimal threshold for computational reasons (e.g., memory load and training speed). However, practical advice

would be to train a model with a minimum frequency of 10, and in subsequent analysis disregard frequencies higher than 100 or 200.
7Currently, the standard distance measure is the cosine distance between two vectors. However, given that these vectors can have

extremely many dimensions, a very small change in one dimension could in theory signify a large change in meaning. Therefore, a future

direction for research is to investigate and evaluate other distance measures that can account for small but significant changes.
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time bins (see more in 3.2). Then, vector representations are created for every target word individually for each

time bin. Typically, we create vectors for all words in the lexicon, but a subset is also possible. Finally, the

vectors of each word corresponding to different time points are compared and their change is assessed. Below

we focus on unique steps and the relevant considerations for different models.

Count-based models. Change detection using count-based vectors is dependent on whether the vectors are

word-level vectors or token vectors. For word-level vectors, the situation is straightforward. Count-based

models generate explicit vector representations for the target words. Each cell in the vector corresponds to

a specific word that co-occurs with the target word (or its context words). The dimensions (elements in the

vectors) are known and can be fixed across time, for example, as the union of all words that occur in any time

periods sorted in alphabetic order. Therefore, a distance function can directly be used to measure how much

the vectors corresponding to a word have changed between two time points. Because of the explicit nature of

the vectors, it is possible to examine which words co-occur more or less frequently with the target word and

thus investigate the nature of any change. For example, the model may detect that the word Apple now more

frequently co-occurs with technical products than with fruit and other edibles.

Static models. Predictive static models train vector spaces on text for each time bin independently, resulting in

separate vectors spaces for each bin. Because the dimensions of the vector space are neither explicit nor known,

vectors from independent spaces cannot be directly compared. In the room analogy, one can think of this as

animals being located close together, but in different corners of the room at different points in time. Before we

can compare vectors from different time periods, we must thus ensure that the vectors belong to the same space.

There are three ways in which this problem can be alleviated: (a) Aligning pairs of vector spaces prior

to comparison (i.e., rotating the spaces such that their basis axes match) [Hamilton et al., 2016]. (b) Using

temporal referencing [Dubossarsky et al., 2019] that uses the original corpus without dividing it into time bins

and adds temporal information to the target words as special tags. This means creating several versions of a

word (cell 1910, cell 1920, etc.) and putting all words in a single vector space. (c) Using incremental training

[Kim et al., 2014] where the vector space of each following time bin starts with (i.e., is initialized with) the

vector space of the previous time bin. All three methods ensure that direct comparison between vectors from

different time bins is possible using a distance function based on vector arithmetic.

If one uses the method of nearest neighbors, individually trained vector spaces can be used for change

detection without prior alignment. In this case, the word is compared only to its neighbors from the same vector

space, ensuring that the vectors already share the space and can thus be directly compared.

Contextualized models. Contextualized models create token vectors, that is, each individual occurrence of a

word is represented by its own vector. The comparison of vectors from different time periods is trivial: all

vectors share the same semantic space as they are derived from the same model. Change detection then follows

in one of three ways:8

1. Token vectors are averaged across all occurrences (creating a single type vector for each word per time

period) and comparison is done by using a distance function, as with the static model. The benefits

compared to static models stem from the model’s training on a much larger textual corpus, resulting in

significantly richer information that is expected to carry over to the averaged vector.

2. Token vectors are first clustered according to similarity in meaning, and then compared across time peri-

ods. Then we can either follow the above procedure and average the token vectors of all occurrences that

belong to the same sense, or use a distance function (e.g., Jensen-Shannon) that measures the changing

sense distributions over time [Giulianelli et al., 2020]. The benefits of the approach are clear: we can de-

rive sense information from the token representations. However, the change detection problem becomes

significantly more complex: instead of comparing a single vector per time period, we need to compare

several for each time period.

Using contextualized models does not usually require training, as models are generally pretrained but can op-

tionally be fine-tuned on a historical corpus.9 However, unlike count-based and static models that generate their

representations solely from the (historical) corpus they are trained on, contextualized models are trained on a

huge amount of “all purpose” text before being applied to historical text. This causes a major concern as vectors

8Though it has not been done regularly, a similar methodology can be used for count-based models.
9We will use “historical corpus” as an example here, but this corpus could be exchanged for any other domain-specific corpus, for

example containing medical texts or literature.
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generated from historical text may contain information picked up during pretraining from a different domain,

leading to meaning representations that cannot be attributed to historical information alone.10 Despite this at-

tribution problem, it is advantageous to use contextual models precisely because their pretraining on massive

amounts of data leads to meaning representations of higher quality. As most words are rather stable in meaning

historically (especially over short time periods), contextualized models provide more accurate representations

than models that are trained only on historical data whose size is orders of magnitude smaller. A smaller corpus

will have difficulty producing accurate vectors even for stable words. The problem of information prevalence

in pretrained models should not prevent their use, but users should be aware of this issue and place a higher

emphasis on testing and evaluation of a detected change.

Choice of model. So far, we have seen strong evidence that count-based models for semantic change are

outperformed by predictive models. Research on predictive models has also shown some indication, although no

conclusive evidence, that contextual methods outperform static methods in the task of computational modeling

of semantic change. Therefore, at present the choice between the two methods can be made on the basis of the

research question rather than quality indicators and the availability of pretrained models and historical corpora.

We advise that the community should not focus exclusively on one type of meaning representation as it is likely

that different research formulations (see section 1) will need different meaning representations, in particular

those that go beyond the distributional hypothesis.

3.2 CUI: The corpus under investigation

Like most data-intensive research fields, computational modeling of semantic change is dependent on the quality

of the data it processes. We call this data the corpus under investigation (CUI), where the word corpus refers to

either a collection of texts (i.e. a corpus in the linguistic sense) or a (thematic) dataset.

CUIs differ significantly depending on the source and the types of semantic change recorded in them. For

example, the potential changes that can be found in a digitized corpus of newspapers spanning 200 years are

different from those found in social media texts spanning 5 to 10 years. Likewise, analyzing standard language

may generate different vectors for the same words when compared to more specialized domains that contain

text on different topics or in different genres or registers (e.g., medical, financial, or legal).

Therefore, a prerequisite for semantic change analysis is that the changes we are looking for can potentially

appear in the CUI (and in large enough quantity to be detectable) both in terms of genre and time periods. It is

also important that the CUI has temporal information (relating to day, month, year, or decade of writing).

A CUI is commonly divided into non-overlapping time bins to facilitate its historical analysis. Alternatively,

different corpora distributed over time are used, like the British National Corpus (BNC), or a modern newspaper

collection. In all analyses, we assume that changes only exist between time bins, and that no (or negligible)

change exists within an individual time bin. One can control the binning granularity, creating CUIs with finer or

coarser time resolution, to better suit the nature of the semantic change being studied (e.g., ephemeral change

requires shorter time bins). However, more binning means that the amount of text per bin is reduced, and

depending on the size of the original corpus, there is a trade-off between high granularity and a sufficient

amount of text per time bin to draw reliable conclusions.11

Other characteristics to consider are spelling variations, either due to mistakes, lack of canonical spelling

(especially in older texts and social media) or OCR errors. A high amount of nonstandard spelling reduces the

number of instances of a given word, as they will be split over multiple different word forms. The preprocessing

steps are also relevant, for example, lemmatization or syntactic information. A non-lemmatized text would

result in a different vector representation for each inflection of a word, thus complicating its analysis. This also

results in fewer occurrences of a word type and thus leads to lower quality (static) vector spaces (unless the

CUI is huge). However, for contextualized methods, lemmatization is not necessary. By contrast, syntactically

parsed text would enable us to easily discern that Apple changed its meaning by adding a meaning related to a

proper noun (the company), leaving its fruit sense unchanged.

10Although it is possible in theory to pretrain a contextualized model completely on historical text and thus eliminate this problem, this

would require a huge amount of data that is typically not available for historical texts.
11Binning has particularly adverse effects for static models that require each word to have many repetitions during training. The decreased

frequency of words per time bin reduces the quality of word representations, and consequently reduces the ability of the model to reliably

detect genuine changes in word meaning. See also 4.1.
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3.3 Choosing the CUI

Our research aims and boundaries directly affect the choice of CUI and the corresponding computational

method. For example, a model that cannot handle large volumes of text cannot be used for a CUI with bil-

lions of words. Or, if we aim to find semantic change in medical terminology, we need a method that can create

meaning representations for multi-word expressions. We should therefore ensure that (a) the CUI contains an-

swers to our research questions and (b) that our models can accurately represent meaning needed to answer our

questions based on that particular CUI.

Importantly, when comparing corpora over time, we should be aware of the possibility that other confound-

ing variables may have changed. Often, due to lack of good, long-spanning datasets, corpora from different

mediums are compared, leading to a simultaneous investigation of both semantic change and, for example,

genre change. Despite the current availability of historical corpora being less than optimal, we can make use of

the available data provided we verify the results using proper evaluation techniques (see Section 4).

When it comes to finding answers to the general question Have our words changed their meaning? we need

general and broad corpora. However, even the most comprehensive, balanced, or curated CUI constitutes only a

sample of language usage and, since it cannot be said to be a random sample, it cannot represent the language as

a whole (for a longer discussion, see Koplenig [2016] and Kutuzov [2020]). As a result, we can miss words that

have undergone semantic change, get a skewed picture of these changes, or find corpora-specific changes that

do not generalize. Ultimately, it is difficult to know whether the results (or lack thereof) represent how language

truly behaves, or whether they stem from a bias in the CUI. The same holds for the interaction between the CUI

and the computational methods we choose [Dubossarsky et al., 2017]. One should always exercise caution when

reporting findings (for example, listing a set of words that are historically stable or deriving laws of semantic

change). To partially remedy this, and to get more general results, it is advisable to repeat the analyses multiple

times under different conditions. In others words, it is important to use different CUIs and computational

models, and to conduct statistical tests to evaluate how likely these changes are relative to random effects. Here,

pretrained models that make use of huge background corpora are better suited, specially if their results are

compared to the results of models trained on a known CUI.

4 Evaluation

As is the case in most data-driven and experimental research, evaluation is very important. We want to make sure

that the information we are capturing is correct, and also to some extent complete. The standard of evaluation in

lexical semantic change research has fluctuated considerably so far. Before the introduction of standard datasets

and evaluation tasks, researchers were left to evaluate as they saw fit.

The first standard evaluation task was launched in 2020: SemEval-2020 Task 1 on unsupervised lexical

semantic change detection [Schlechtweg et al., 2020]. Since then, we have seen several more shared tasks and

a move towards a standard of evaluation. To date, there are evaluation datasets for German, English, Swedish,

Latin, Russian, Italian, Spanish, and Norwegian [Schlechtweg et al., 2020, Basile et al., 2020, Kutuzov et al.,

2021, 2022, Zamora-Reina et al., 2022].

Because our models of meaning rely on vector representations, we must begin by evaluating the quality of a

vector space. In doing this, we indirectly evaluate the accurate meaning representation of our words (especially

for static embedding representations). With pretrained contextualized models, the quality of the vector space is

often assumed to be high due to its ubiquitous use in other domains. Nonetheless, we encourage proper testing,

for example, by manually investigating a few words and their relations.

Depending on what question we set out to answer (and recall the problem formulations in section 1), we need

to perform different kinds of evaluation. If our aim is to find what is present in a CUI, we need to ground the

results in the CUI. Does the CUI support the finding that a word has changed its meaning in the way the model

proposes? If, however, what we are looking for relates to language in general, we can evaluate our results using

dictionaries or by asking annotators about their general knowledge of the semantic change of a word. Often,

the examples used in evaluation are novel words or words that have experienced large semantic changes. For

example, novel words from a technical domain like Internet, blog, or wifi are often used to control whether the

model can find what they mean and when these meanings appeared. Examples of words with large semantic

changes that are used for evaluation include mouse, which adds a technical meaning; rock, which adds a music

sense; and Apple, which adds the meaning of a company or product to its existing senses. In clear-cut cases like

these, evaluation can be done by comparing the outcome of a model to general world knowledge, found either

in dictionaries or in knowledge bases like Wikipedia. In Tahmasebi et al. [2021], the word computer is used to
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evaluate three different CUIs from the Google N-gram corpus. The frequency of the word ”computer” (Rechner

in German) rises above 0.0001% in 1934 for German, 1943 for American English, and 1953 for British English.

This example shows that a method evaluated on the latter dataset would be penalized by 20 years compared to

one evaluated on the German dataset. Therefore, even in generic cases of semantic change, it is important to

ground the results in the relevant CUI to know the true performance of the method’s ability to detect change.

When it comes to evaluating unknown words, or detecting change for all words in the vocabulary, there

are still two key questions we need to be able to answer that nicely summarize the semantic change task itself,

namely, what a word means and when two meanings are the same.

4.1 A thought experiment

To illustrate the difficulty in modeling both meaning and meaning change, let us conduct a thought experiment.

We have a corpus, M, of decent size, let us say 200 million tokens. If we model the meaning of a word

given the whole corpus, we will get a meaning representation w(M) for a word w. w(M) can be either a single

representation, as in type-based vector representations, or a set of representations as in contextual models.

What does a word mean? To answer this first question, we must ensure that the function we have chosen

to map a word w to a representation w(M) is appropriate. Put differently, we need to know that w(M) provides

an accurate representation of w as it is evident in the whole corpus; it should not miss out on certain important

parts, nor misrepresent w. Given w(M), we should be able to understand what w means in a way that is accurate

according to all the information that is stored in our corpus M. Today, these representations are often evaluated

in one of two ways. The second seems more prominent, but is currently limited to modern meaning.

1. A few sample words are chosen and their closest neighbors are investigated by manual inspection. Do

the K-nearest neighbors correspond to the expected result? To give an example, does the word rock have

neighbors that relate only to natural stone in historical text and to both stone and music in modern text?

2. The vector space is evaluated by measuring how well it preserves semantic similarity according to a

standard word similarity dataset. Examples of these datasets include WordSim-353 [Finkelstein et al.,

2001] and SimLex-999 [Hill et al., 2015]. Each of these datasets contains a set of words that have been

rated for semantic similarity, or semantic relatedness, by human annotators.

When are two meanings the same? The second question we need to answer is when two meanings are the

same. Imagine that we split the corpus M into two halves, M1 and M2, each containing 100 million tokens.12

From each of these halves, we get one representation for the word w. Let us call them w(M1) and w(M2).

Because the three corpora, M , M1 and M2 all have different tokens, the three representations for the same

word, w(M), w(M1) and w(M2), will all be different. In fact, each time we make a new random split resulting

in new subcorpora M1 and M2, the representations will be different.13 The differences between w(M), w(M1)

and w(M2) are due to random variations, or variance in the tokens underlying the modeling. However, because

there is no ’true’ semantic change, as we have just randomly split our dataset in two, we want to have a measure

that can detect that w(M), w(M1) and w(M2) are in fact similar enough to represent the same word w.

Now let us assume that the corporaM,M1 and M2 are from three different time periods t0, t1, t2, each with

100 million tokens. We will still end up with three different representations of the meaning of word w namely

w(M, t0), w(M1, t1) and w(M2, t2). But, unlike the case above where the differences were insignificant, the

differences here may be due to gradual semantic change, and should be detected as such by the change detection

algorithm.

In conclusion, we want to be able to distinguish between true cases of semantic change and those that stem

from random variation in the underlying dataset. We recognize that semantic change scores are reliable only if

they are larger than the scores of random variations [Dubossarsky et al., 2017, 2019].

4.2 Evaluation strategies

Generally speaking, semantic change is evaluated using one of three strategies: (1) evaluate on a testset previ-

ously evaluated by hand; (2) evaluate the outcome of an experiment; and (3) evaluate using control settings. We

12This is still a reasonable size to assume that our models are providing robust results and not random noise.
13This is true unless we can assume that the size of M,M1 and M2 approaches infinity. However, because few of our datasets have the

property of having infinitely many tokens, we can safely assume that the corpus M is of finite size, and hence both M1 and M2 are of finite

size.
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will briefly discuss these different evaluation strategies and their pros and cons.

A priori determined testsets. In this category of testing we determine what to expect for a smaller selection

of words before we start the experiments. Typically, these words are tied to the corpus that we are using, that is,

the CUI. Sometimes, however, these are lists of words with an attached change score that are produced without

regard to any dataset, for example, the one provided by Gulordava and Baroni [2011]. Examples where the

testset is tied to the CUI are the SemEval and follow-up testsets, where a set of words have been manually

determined to belong to the categories of Change or Stable in the corresponding CUIs. In evaluation tasks like

SemEval-2020 Task 1, this is called semantic change detection.

The testing of both changing and stable words is important. If we test a model’s ability to determine change

only on words that have experienced change, we will not be able to detect if the model classifies all words as

changing words. Hence, a model’s ability to differentiate between changed and stable words is important.

Creating these evaluation datasets requires extensive manual effort. For that reason, they are often restricted

in various ways, for example, in the number of time points that are used for evaluation, or the number of words

for which change scores are provided. However, by putting in the effort a priori, we can compare any results,

regardless of how they were created. Every time new algorithms or modeling paradigms appear, we can retrain

our models, run the experiments and evaluate them with respect to known testsets and compare our results to

previous results under the same conditions.

Evaluating a posteriori. Instead of evaluating with respect to a preexisting testset, we can choose to evaluate

the outcome of our models directly. This evaluation framework is important when we target novel task formula-

tions or datasets for which there are no a priori available testsets. The downsides of this kind of evaluation are,

however, plentiful. Firstly, the conditions under which we evaluate are different each time. The majority of the

work on semantic change was evaluated in this fashion in the past. Each researcher defined their own evaluation

criteria, size of evaluation set, and often cherry picked the examples for illustration, thus providing results that

cannot be compared. Another clear downside is that we get different results each time we make changes to

our methods, use different preprocessing, or make changes to the hyper-parameters. These results must then be

re-evaluated. In the worst case, if there is no overlap between the current and the previous set of results, all the

manual effort needs to be repeated. In the LSCDiscovery shared task for Spanish [Zamora-Reina et al., 2022],

this is called semantic change discovery.

The upsides of this method are nonetheless substantial. This evaluation framework allows us to go beyond

predetermined sets of words and datasets to find out how our algorithms perform ’in the wild’. There is a clear

benefit to using this framework, and we suggest it is used as an important complement to the a priori evaluation

framework. First, we can find out how our method performs on a known testset compared to other methods.

We may possibly employ these preliminary tests to develop or tune the model. Then, we can run it on a new

dataset or in a new context and evaluate the outcome of the method. This combination reduces the amount of

effort required for evaluating while still providing valuable insights into the performance of the model.

Evaluating using control settings. In addition to evaluating how our methods are able to detect semantic

change on the level of individual words, we can evaluate what our methods find on the level of the vocabulary

as a whole. Providing manual evaluation data on the level of the vocabulary would be extremely costly in terms

of both time and money. We therefore need to devise other strategies for controlling our methods. We can

do this either by using synthetic evaluation data where we simulate change on a larger scale, as in the work

of Shoemark et al. [2019] and Dubossarsky et al. [2019], or by using other control criteria. One example of a

control criterion is shuffling, which exposes inherent properties of the corpus as a whole and allows us to test

whether our methods are detecting semantic change or other underlying change properties. If every time period

contains data from every other time period, then we should not expect our methods to detect any semantic

change. But if the methods do detect semantic change after shuffling of the texts, then we can assume that they

are, in fact, modeling something other than semantic change, possibly related to fluctuations in the amount of

data over time.

In general, the majority of the corpora we use for semantic change detection naturally grow in size over

time. For example, the majority of our newspaper corpora have an increasing number of articles as well as

longer articles over time. The question that we need to answer is the following: Are we detecting semantic

change or the fact that our datasets are larger? We can control for this increasing data size by, for example,

using a fixed amount of text per time period.
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These kind of control criteria allow us to zoom out from the individual details and obtain a high-level

overview of the model in general. That our models can detect ’true’ semantic change in individual instances

is beside the point – even a broken watch is correct twice per day. It is the general behavior over the whole

vocabulary and time period that is important. Our methods should not be capturing change when there is no

change to be found.

5 Summary

Computational modeling of semantic change can be used as a powerful tool to study individual words, whole

languages, and the interaction between languages. The models can be used to study the process of change,

how changes spread across languages, and how languages affect each other. Computational models of semantic

change can also be used to study changing perceptions and change in cultural and societal aspects of our lives as

evidenced in text. With these models, we have the possibility of studying changing phenomena that live in our

texts, regardless of whether they are describing our language or our lives beyond the text. Thus far, however,

models for semantic change have not been used to their full potential and there is much research to be done in

terms of both development within semantic change and its application to other fields.

In this chapter, we have discussed different methods for modeling meaning based on given texts, as well

as modeling meaning change. We have described the latest methods in terms of modeling, both static and

contextual embedding methods, as well as their pros and cons with respect to the study of semantic change.

We have provided some insight into the interaction of data sources and semantic change detection and have

discussed important aspects relating to evaluation of the results.

This chapter in the handbook should enable researchers with a general knowledge of natural language pro-

cessing, (computational) linguistics, or computer science to begin modeling semantic change. They will have

the tools to choose an appropriate model and appropriate data to correspond to the research question, and they

will be able to perform appropriate evaluation of the results.
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