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Abstract

Contextualized embeddings are the pre-
ferred tool for modeling Lexical Semantic
Change (LSC). Current evaluations typically fo-
cus on a specific task known as Graded Change
Detection (GCD). However, performance com-
parison across work are often misleading due
to their reliance on diverse settings. In this
paper, we evaluate state-of-the-art models and
approaches for GCD under equal conditions.
We further break the LSC problem into Word-
in-Context (WiC) and Word Sense Induction
(WSI) tasks, and compare models across these
different levels. Our evaluation is performed
across different languages on eight available
benchmarks for LSC, and shows that (i) APD
outperforms other approaches for GCD; (ii)
XL-LEXEME outperforms other contextual-
ized models for WiC, WSI, and GCD, while
being comparable to GPT-4; (iii) there is a clear
need for improving the modeling of word mean-
ings, as well as focus on how, when, and why
these meanings change, rather than solely fo-
cusing on the extent of semantic change.

1 Introduction

Lexical Semantic Change (LSC) is the problem of
automatically identifying words that change their
meaning over time (Montanelli and Periti, 2023;
Tahmasebi et al., 2021; Kutuzov et al., 2018; Tang,
2018). The interest in this problem has been signif-
icantly fueled by the advent of word embeddings
and modern language models. After more than
a decade of ad hoc evaluation, a new evaluation
framework was recently introduced, aimed at as-
sessing and comparing the performance of different
models and approaches (Schlechtweg et al., 2020).
This framework was adopted to create benchmarks
in different languages. Each benchmark includes
a diachronic corpus spanning two time periods,
along with a list of target words and tasks aimed
at detecting word meaning change over time. The
most popular task, known as Graded Change

Detection (GCD), consists of ranking a list of
target words based on their degree of change.

The initial excitement for word embeddings
prompted researchers and practitioners to solve
the GCD task by using static embedding mod-
els (Schlechtweg et al., 2020; Shoemark et al.,
2019). However, the shift towards more advanced
Transformer architectures has established the use
of contextualized embedding models as the pre-
ferred tool for addressing GCD (Montanelli and
Periti, 2023; Kutuzov et al., 2022b). On one hand,
these models distinguish the different meanings of
a word by contextualizing each occurrence with a
different embedding. On the other hand, the gen-
eration and processing of contextualized embed-
dings across entire corpora pose scalability chal-
lenges, both in terms of time and memory consump-
tion (Periti et al., 2022; Montariol et al., 2021). Dif-
ferent strategies have been adopted to tackle these
challenges, leading to a proliferation of evaluations
across diverse settings (e.g., limited samples of
benchmarks) and conditions (e.g., pre-trained vs.
fine-tuned models). As a result, these evaluations
on GCD hinder a fair comparison among the perfor-
mance of different models and approaches, thereby
deviating from the original goal of the framework.

Moreover, while the GCD task is attracting more
and more evaluations, it addresses only a partial
complexity inherent to the established framework.
Notably, the framework includes three distinct as-
pects (Schlechtweg et al., 2021):

i) semantic proximity judgments of word in-
context,

ii) word sense induction based on proximity
judgments,

iii) quantification of semantic change from in-
duced senses.
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As a matter of fact, when contextualized embed-
ding models are used to address GCD, cosine simi-
larities among word embeddings serve as surrogate
for (i), without evaluation focused on this aspect.
Additionally, most approaches to GCD, pass from
(i) to (iii), sidestepping the intermediate aspect (ii).
That is, they quantify semantic change as overall
proximity variation, without inducing word senses.
Consequently, while these approaches can be evalu-
ated through GDC, they preclude the interpretation
of which meaning(s) have changed.

We argue that (i) and (ii) are equally relevant
aspects as (iii), constituting a fundamental aspect
of the LSC problem. Their evaluation can pro-
vide valuable insights into the current state of LSC
modeling, while offering a broader perspective on
contextualized embedding models in Natural Lan-
guage Processing (NLP).1.

Original contribution of our work
• We systematically evaluate and compare var-

ious models and approaches for GCD under
equal settings and conditions. Our evalua-
tion for GCD spans eight different languages.
Importantly, we perform the first evaluation
over Chinese and the second evaluation for
Norwegian within the existing literature. Our
results show superior performance of the re-
cent state-of-the-art model for GCD, namely
XL-LEXEME, over various approaches.

• We are the first to evaluate contextualized
embedding models for (i) and (ii) within
the existing literature. Our evaluation of (i)
and (ii) relies on two well-known tasks in
NLP, namely Word-in-Context (WiC),
and Word Sense Induction (WSI). Im-
portantly, we evaluate various models as com-
putational annotators.

• We compare GPT-4 to contextualized mod-
els through the WiC, WSI, and GCD tasks.
Our evaluation reveals that GPT-4 obtains
comparable performance to XL-LEXEME. In
contrast to the limited accessibility2 and high
associated cost3 of GPT-4, XL-LEXEME is
a considerably smaller, open-source model.
Thus, we argue that the use of GPT-4 is not
justified for modeling the LSC problem.

1Software is available at https://github.com/
FrancescoPeriti/CSSDetection.

2https://platform.openai.com/docs/
guides/rate-limits

3https://openai.com/pricing

Figure 1: DWUG for the German word Eintagsfliege.
Nodes represent word usages. Edges represent the relat-
edness between usages. Colors indicate clusters (senses)
inferred from the full graph (Laicher et al., 2021).

2 Background and related work

The established LSC framework adheres to the
novel annotation paradigm for word senses and en-
compasses (i-iii) (Schlechtweg et al., 2021). (i) Hu-
man annotators provide semantic proximity judg-
ments for pairs of word usages sampled from a
diachronic corpus spanning two time periods. (ii)
Word usages and judgments are represented as
nodes and edges in a weighted, diachronic graph,
known as Diachronic Word Usage Graph (DWUG).
This graph is then clustered with a graph clustering
algorithm and the resulting clusters are interpreted
as word senses (see Figure 1), thus sidestepping the
need for explicit word sense definitions. Finally,
(iii) given a word, a ground truth score of semantic
change is computed by comparing the probability
distributions of clusters in different time periods,
e.g., a cluster with most of its usages from one time
period indicates a substantial semantic change.

Originally, the framework was proposed in a
shared task at SemEval-2020, including bench-
marks for four languages, namely English
(EN), German (DE), Swedish (SW), and Latin
(LA) (Schlechtweg et al., 2020). Benchmarks for
Italian (Basile et al., 2020), Russian (RU) (Kutuzov
and Pivovarova, 2021b,c), Spanish (SP) (Zamora-
Reina et al., 2022b), Norwegian (NO) (Kutuzov
et al., 2022a), and Chinese (ZH) (Chen et al.,
2023a, 2022) have recently been introduced. Each
benchmark4 consists of a diachronic corpus and a
set of target words over which the human annota-
tion was conducted. The evaluation over a bench-
mark is typically conducted through the GCD task
where the goal is to rank the targets by degree of
semantic change across the corpus. The Spearman
correlation between predicted and ground truth
scores is used to evaluate models and approaches.

4See https://github.com/ChangeIsKey/
LSCDBenchmark for a comprehensive overview of
available benchmarks

https://github.com/FrancescoPeriti/CSSDetection
https://github.com/FrancescoPeriti/CSSDetection
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://openai.com/pricing
https://github.com/ChangeIsKey/LSCDBenchmark
https://github.com/ChangeIsKey/LSCDBenchmark


2.1 Approaches to Graded Change Detection
GCD is typically addressed using two kinds of
approaches for modeling word meanings: form-
and sense-based (Montanelli and Periti, 2023; Giu-
lianelli et al., 2020). The former capture signals of
change by analysing how the dominant meaning,
or the degree of polysemy of a word, changes over
time (e.g., Giulianelli et al., 2020; Martinc et al.,
2020a). The latter cluster word usages according
to their meanings and then estimate the semantic
change of a word by comparing the cluster distribu-
tion of its usages over time (e.g., Periti et al., 2023;
Martinc et al., 2020b). Form- and sense-based
approaches can be further distinguished into su-
pervised, which leverage external knowledge (e.g.,
dictionaries, Rachinskiy and Arefyev, 2022) or
other forms of supervision (e.g., Word-in-Context
datasets, Cassotti et al., 2023), and unsupervised,
which rely solely on the knowledge encoded in pre-
trained models (e.g., Aida and Bollegala, 2023).

2.2 Comparison of approaches
Models and approaches for GCD have been evalu-
ated under different settings and conditions. For ex-
ample, some studies utilized the entire diachronic
corpus to estimate the change of each target
(e.g., Periti et al., 2022), while others relied on
smaller samples (e.g., Rodina et al., 2021), or solely
on the annotated word usages (e.g., Laicher et al.,
2021). Also, different versions of the ground truth
are used (e.g., Schlechtweg et al., 2022a). In the
current literature, some studies fine-tune the mod-
els on the corpus (e.g., Rosin et al., 2022), while
others directly use pre-trained models (e.g., Kud-
isov and Arefyev, 2022). Performance compar-
ison are conducted across different models such
as BERT (e.g., Laicher et al., 2021), mBERT
(e.g., Beck, 2020), and XLM-R (e.g., Giulianelli
et al., 2022). However, even when the same model
is employed, different layer aggregations are used,
such as concatenating the output of the last four en-
coder layers (e.g., Kanjirangat et al., 2020), or sum-
ming the output of all the encoder layers (e.g., Giu-
lianelli et al., 2022). Moreover, sense-based ap-
proaches are compared with different clustering
algorithms such as Affinity Propagation (e.g., Mart-
inc et al., 2020b), A Posteriori affinity Propagation
(e.g., Periti et al., 2022), and K-Means (e.g., Mon-
tariol et al., 2021).

As a results, comparing Spearman correlation
across different evaluations is often misleading.

2.3 Current modeling of LSC
Current modeling of LSC overlooks the procedure
(i-iii) used to generate the ground truth. Mostly,
only (iii) is evaluated by relying on form-based
approaches. However, these approaches capture
only the degree of semantic change, preventing its
interpretation. Sense-based approaches could fill
this gap by explaining how and what has changed,
but currently suffer from lower performance on
(iii) and are therefore less pursued. As a results,
it is not clear which meanings these models and
approaches are capturing. There is thus a need to
carefully evaluate their ability in both (i) and (ii).

Thus far, this evaluation is missing. To the best
of our knowledge, only Laicher et al. (2021) evalu-
ate (ii) through the WSI task. This evaluation needs
to be extended beyond a single model, using the
same procedure used to generate the ground truth.

A systematic comparison under equal settings
and conditions is necessary to evaluate different
models and approaches. Thus, we first evaluate
standard form- and sense-based approaches to pro-
vide a fair performance comparison on GCD across
eight languages. We then assess different models
as computational annotators by evaluating them
on (i-iii) through WiC, WSI, and GCD. Aligning
with Karjus (2023), if computational models per-
form close to human-level, their usage would rep-
resent an unprecedented opportunity to scale up
semantic change studies in the humanities and so-
cial sciences.

3 Evaluation setup

We consider benchmarks for eight different lan-
guages: EN, LA, DE, SV, ES, RU, NO, and ZH
(see Table 6). For each benchmark, we evaluate
four different models: BERT (Devlin et al., 2019),
mBERT, XLM-R (Conneau et al., 2020), and XL-
LEXEME (Cassotti et al., 2023). Aligning with
the unsupervised nature of the LSC framework,
we compare pre-trained models without perform-
ing additional fine-tuning (see Table 7). For each
model and each target word in a benchmark, we
collect contextualized embeddings for all its word
usages in both time periods. Specifically, we gener-
ate the sets of embeddings Φ1 = {a1, ..., an} and
Φ2 = {b1, ..., bm} for the word usages associated
to time periods t1 and t2, respectively.



3.1 Standard Graded Change Detection
We compare the use of different models with four
standard approaches to GCD, specifically two form-
based and two sense-based. Similar to Laicher et al.
(2021), we consider the raw data originally used to
derive ground truth scores, instead of considering
the associated corpora. This ensures an accurate
evaluation under a controlled setting.

3.2 Computational annotators
We assess different models as computational anno-
tators by using cosine similarities between embed-
dings as a surrogate of human judgments. In our
evaluation, we consider word usage pairs where
human judgments are available, instead of consid-
ering all potential usage pairs (as in Section 3.1).
Specifically, we adhere to the framework (i-iii) and
evaluate different models through the WiC, WSI,
and GCD tasks.

Inspired by Periti et al. (2024); Laskar et al.
(2023); Kocoń et al. (2023); Karjus (2023), we
evaluate GPT-4 and compare its use to contextu-
alized models. However, the limited accessibility
and high associated cost constraint our extension
only to the EN benchmark.

4 Comparing approaches for GCD

We evaluate different approaches for GCD using
Spearman correlation between computational pre-
dictions and ground truth scores. Specifically, we
process the embeddings of each target using the
following approaches.

4.1 Form-based approaches
In the most recent survey on LSC by Montanelli
and Periti (2023), it was observed that cosine dis-
tance over word prototype (PRT) and the average
pairwise distance (APD) consistently demonstrated
superior performance compared to alternative ap-
proaches. Thus, we employ these approaches:

PRT computes the degree of change of a word w
as the cosine distance between the average embed-
dings µ1 and µ2 (also know as prototype embed-
dings) of w in the time periods t1 and t2 (Martinc
et al., 2020a; Kutuzov and Giulianelli, 2020). For-
mally, given a word w, we compute its degree of
change by computing:

PRT(Φ1,Φ2) = 1− cosine(µ1, µ2) (1)

The intuition behind PRT is that a prototype em-
bedding encodes the dominant meaning of a word,

and as such, the semantic change is computed as a
shift in the dominant meaning over time.

APD computes the degree of change of a word w
as the average pairwise distance between the word
embeddings in Φ1 and Φ2 (Giulianelli et al., 2020;
Kutuzov and Giulianelli, 2020). Formally, given a
word w, we compute its degree of change, where d
is cosine distance, as follows:

APD(Φ1,Φ2) =
1

|Φ1||Φ2|
·

∑
a∈ Φ1, b∈ Φ2

d(a, b)

(2)
The intuition behind APD is that different word
embeddings encode the polysemy of a word, and
as such, the semantic change is computed as a shift
in the word’s degree of polysemy.

4.2 Sense-based approaches
We choose two state-of-the-art sense-based ap-
proaches (Montanelli and Periti, 2023).The first uti-
lizes the unsupervised clustering algorithm Affin-
ity Propagation (AP) combined with the Jensen
Shannon divergence (JSD). Additionally, we em-
ploy the evolutionary extension of Affinity Propaga-
tion, called A Posteriori affinity Propagation (APP),
combined with the average pairwise distances be-
tween sense prototypes (APDP). This approach is
called WiDiD (Periti et al., 2022).

AP+JSD leverages the AP clustering to distin-
guish the different contextual usages of a given
word w. Specifically, the embeddings Φ1, and Φ2

are collectively clustered to generate clusters com-
prising embeddings from both time periods (i.e.,
t1 and t2), or embeddings exclusive from a time
period (i.e., t1 or t2). The semantic change of w
is computed as the JSD between the probability
distributions p1 and p2 of clusters in time periods
t1 and t2. These distributions represent the relative
number of embeddings from Φ1 and Φ2 grouped in
each cluster, respectively (Martinc et al., 2020b,c).
Formally, the degree of semantic change is:

JSD(p1, p2) =
1

2
(KL(p1||M) +KL(p2||M))

(3)
where KL stands for Kullback-Leibler divergence
and M = (p1+p2)

2 . The intuition behind AP+JSD is
that different clusters encode nuanced word mean-
ings, and as such, the semantic change is com-
puted as an overall measure of the differences in
the prominence of each sense over time.



WiDiD leverages the APP clustering to distin-
guish the usages of a given word w. Specifically,
the embeddings Φ1, and Φ2 are individually clus-
tered to generate incremental clusters of embed-
dings that evolve with each clustering iteration.
The semantic change of w is computed as the av-
erage pairwise distances between the sense proto-
types Ψ1 and Ψ2 of w in the time periods t1 and
t2, where Ψ1 and Ψ2 are the set of embeddings ob-
tained by averaging the embeddings Φ1 and Φ2 in
each cluster, respectively (Periti et al., 2023; Kash-
leva et al., 2022). Formally, given a word w, the
degree of semantic change is computed as follows:5

APDP(Φ1,Φ2) = APD(Ψ1,Ψ2) (4)

The intuition behind WiDiD is similar to AP+JSD.
However, while the latter considers change as the
difference between the amount of probability for
a sense over time, WiDiD is similar to APD in
computing the shift in prototypical word meanings.

4.3 Evaluation results - Table 1
We present the results of our evaluation in Table 1
for both form- and sense-based approaches. For
the sake of comparison, we include state-of-the-art
(SOTA) results in Table 5.6 As a general remark,
we note instances where our results surpass SOTA
(e.g., XL-LEXEME+APD for EN). We attribute
this to the controlled setting established in our ex-
periments. We note also instances where our results
are lower than SOTA (e.g., BERT+APD for SV).
This discrepancy may be influenced by various fac-
tors such as different versions of the benchmarks
(e.g., 37 vs 46 targets for EN in DWUG version
2.0.1, Schlechtweg et al., 2020). Additionally, vari-
ations in text pre-processing can play a beneficial
role. For instance, Laicher et al. (2021) demon-
strate the effectiveness of lemmatization to mitigate
word form biases, while Martinc et al. (2020c) sug-
gest that filtering Named Entities can help models
avoid inflating semantic change. Moreover, some
studies fine-tune or utilize different embedding lay-
ers, whereas we adhere to the standard, generally
adopted procedures without fine-tuning, consider-
ing embeddings generated from the last (i.e., 12th)
layer of the models. Finally, there are sometimes

5Following Periti et al. (2023), we use the Canberra dis-
tance instead of the cosine distance

6Our comparison includes results from different bench-
marks using the same approaches. However, some bench-
marks might have been assessed using other approaches.

significantly different results reported by differ-
ent studies under similar conditions. For instance,
Zhou et al. (2023) achieve a correlation of .706
using pre-trained BERT and APD, whereas others
typically report correlations ranging between .400
and .600 (e.g., .489, Keidar et al., 2022; .514, Giu-
lianelli et al., 2020; .546, Kutuzov and Giulianelli,
2020; .571, Laicher et al., 2021). This disparity
cannot currently be explained.

Languages. We obtain strong correlations with
all benchmarks but LA. Our results show a
weighted average correlation of .751 when em-
ploying XL-LEXEME + APD. In this calculation,
we assign weights based on the number of targets
in each benchmark, considering larger sets more
reliable than smaller ones. For LA, it can be ar-
gued that the models were not directly tailored
or fine-tuned for Latin. However, XL-LEXEME
demonstrates optimal performance in GCD in SV
and medium performance in SP and NO without
specific training on either (Cassotti et al., 2023).
This leads us to consider that the quality of the LA
benchmark potentially is lower than other bench-
marks, as it was developed using a different proce-
dure (Schlechtweg et al., 2020).

Form-based vs Sense-based. We note that form-
based approaches significantly outperform sense-
based approaches. Our results consistently high-
light APD as the most effective approach, regard-
less of the skewness in the distribution of judg-
ments, as previously argued by Kutuzov and Giu-
lianelli (2020). In addition, WiDiD consistently
demonstrate superior performance over AP+JSD.
This can be attributed to the use of i) an evolution-
ary clustering algorithm, which enables to consider
the time dimension of text in a dynamic way; or, al-
ternatively ii) APD over sense-prototypes, as APD
has demonstrated high effectiveness.

Our leaderboard is as follows: APD, PRT, Wi-
DiD, AP+JSD. Although form-based approaches
exhibit superior effectiveness, they fall short in cap-
turing word meanings and interpreting detected se-
mantic changes. In contrast, although sense-based
approaches theoretically facilitate such modeling
and interpretation, they obtain poor results in GCD,
raising concerns about their reliability and whether
they capture meaningful patterns or produce noisy
aggregation. We will investigate this in Section 5.

Supervised vs Unsupervised. We note that the
use of supervision significantly improves the mod-



EN LA DE SV ES RU NO ZH Avgw
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2 Ci − Cj

fo
rm

-b
as

ed

APD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.563

.363

.444
.886*
.757
.706

-
.102
.151
.231
-.056
.443

.271

.398

.264
.839*
.877
.731

.270

.389

.257
.812*
.754
.602

.335

.341

.386
.665*
n.a.
n.a.

.518

.368

.290
.796*
.799
.372

.482

.345

.287
.820*
.833
.480

.416

.386

.318
.863*
.842
.457

.441

.279

.195

.659

.757

.389

.466

.488

.379
.640*
.757
.387

.656

.689

.500
.731*
n.a.
n.a.

.449

.371

.316
.751*

PRT

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.457

.270

.411

.676

.531

.467

-
.380
.424
.506*
n.a.
.561

.422

.436

.369

.824
n.a.
.755

.158

.193

.020

.696
n.a.
.392

.413

.543

.505

.632
n.a.
n.a.

.400

.391

.321

.704
n.a.
.294

.374

.356

.443

.750
n.a.
313

.347

.423

.405

.727
n.a.
313

.507

.219

.387
.764*
n.a.
.378

.444

.438

.149

.519
n.a.
.270

.712

.524

.558

.699
n.a.
n.a.

.406

.395

.381

.693

se
ns

e-
ba

se
d

AP+JSD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.289

.181

.278

.493
n.a.
.436

-
.277
.398
.033
n.a.
.481

.469

.280

.224

.499
n.a.
.583

- .090
.023
-.076
.118
n.a.
.343

.225

.067

.224

.392
n.a.
n.a.

.069

.017
- .068
.106
n.a.
n.a.

.279

.086

.209

.053
n.a.
n.a.

.094
- .116
.130
.117
n.a.
n.a.

.314

.035
- .100
.297
n.a.
n.a.

.011
- .090
.030
.381
n.a.
n.a.

.165

.465

.448

.308
n.a.
n.a.

.179

.077

.142

.223

WiDiD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.385

.323

.564

.652
n.a.
.651

-
- .039
- .064
.236
n.a.

-.096

.355

.312

.499

.677
n.a.
.527

.106

.195

.129

.475
n.a.
.499

.383

.343

.459

.522
n.a.
.544

.135
- .068
.268
.178
n.a.
.273

.102

.160

.216

.354
n.a.
.393

.243

.142

.342

.364
n.a.
.407

.233

.241

.226

.561
n.a.
n.a.

.087

.290

.349

.457
n.a.
n.a.

.533

.338

.382

.563
n.a.
n.a.

.239

.181

.314

.422

Table 1: Evaluation of standard approaches to GCD in terms of Spearman correlation. Top score for each
approach and benchmark in bold. The top score of each benchmark is marked with an asterisk (*). We include
state-of-the-art performance achieved by supervised (sup.) and unsupervised (uns.) approaches in italic. Avg is the
weighted average score based on the number of targets in each benchmark. Results not available denoted as n.a.

EN DE SV ES RU NO ZH Avgw
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2 Ci − Cj

W
iC

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

Agreement

.503

.332

.352

.626

.606

.633

.350

.344

.289

.628
-

.666

.221

.284

.255

.631
-

.672

.319

.289

.288

.547
-

.531

.314

.280

.212

.549
-

.531

.344

.273

.250

.558
-

.567

.350

.293

.251

.564
-

.564

.429

.283

.317

.484
-

.761

.406

.333

.261

.521
-

.667

.516

.413

.392

.630
-

.602

.358

.301

.272

.568
-

.593

W
SI

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

.136 / .700

.067 / .644

.068 / .737

.273 / .834

.340 / .877

.047 / .662

.054 / .679

.024 / .725

.300 / .788
- / -

.023 / .596

.024 / .648

.031 / .680

.249 / .766
- / -

.189 / .695

.228 / .700

.164 / .755

.400 / .820
- / -

- / -
- / -
- / -
- / -
- / -

- / -
- / -
- / -
- / -
- / -

- / -
- / -
- / -
- / -
- / -

.251 / .771

.241 / .759

.179 / .775

.337 / .806
- / -

.247 / .758

.159 / .753

.183 / .715

.304 / .808
- / -

.279 / .759

.172 / .713

.279 / .806

.448 / .836
- / -

.166 / .702

.146 / .696

.133 / .743

.339 / .810
- / -

G
C

D

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

.425

.120

.219

.801

.818

.116

.205

.069

.799
-

.148

.234

.143

.721
-

.284

.394

.464

.655
-

.487

.372

.284

.780
-

.452

.325

.301

.824
-

.469

.408

.375

.851
-

.571

.290

.395

.620
-

.521

.454

.345

.567
-

.808

.737

.557

.716
-

.422

.357

.324

.754
-

Table 2: Evaluation of contextualized models as computational annotators: Spearman correlation for WiC and
GCD, Adjusted Random Index and Purity (ARI / PUR) for WSI. Top score for each approach and benchmark is
highlighted in bold. Avg is a weighted average based on the number of targets in each benchmark test set. For the
sake of comparison, we report the Krippendorff’s α score for inter-human annotator agreement in WiC (italic).

eling of semantic change for both form- and sense-
based approaches. While Cassotti et al. (2023) have
previously evaluated XL-LEXEME + APD, we
extend the evaluation to sense-based approaches,
demonstrating that supervision enhances the per-
formance of AP+JSD and WiDiD.

Models. We note that the use of XL-LEXEME
significantly improves the modeling of LSC com-
pared to standard BERT, mBERT, and XLM-R.
However, we observe a pattern in performance,
indicating that on average, BERT performs bet-
ter than mBERT, which, in turn, performs better
than XLM-R for form-based approaches. This sug-

gests that the use of XLM-R models is not more
effective than BERT models for LSC, confirming
the medium-low correlation coefficients obtained
by Giulianelli et al. (2022) using XLM-R.

Layers. As different works employ different em-
bedding layers, we repeat our evaluation by con-
sidering embeddings generated by each layer of
BERT, mBERT, and XLM-R (see Appendix C).
Our evaluation aligns with recent findings on other
downstream tasks (Ma et al., 2019; Reif et al., 2019;
Liang and Shi, 2023) and shows that using early
layers consistently results in higher performance.
For example, we note a correlation of .747 for ZH



by using layer 4, compared to .656 obtained by
using the last layer of BERT. On average, and in
line with Periti and Dubossarsky (2023), we find
that the best results for each language are obtained
by leveraging embeddings from layers 8 – 10.

Furthermore, since previous studies aggregated
outputs from different layers, we also use aggre-
gated embeddings extracted from different layers
through sum and concatenation (see Appendix C).
Specifically, our evaluation covers all possible layer
combinations with lengths of 2 (e.g., layers 1 and
2), 3 (e.g., layers 6, 7, and 8), and 4 (e.g., lay-
ers 9, 10, 11, 12). We find no improvement in
aggregating the output of the last four layers for
addressing GCD. By employing alternative layer
combinations, we obtain higher correlation com-
pared to both the last layer and the last four layers.
For instance, for EN, using the sum of layers 2, 4,
5, and 8 for APD+BERT, or the concatenation of
layers 4, 5, 6, and 11 for WiDiD+BERT, results
in correlation of .692 and .760, respectively; com-
pared to .563 (APD) and .385 (WiDiD) by using the
last BERT layer. However, no combination consis-
tently emerges as the optimal choice across various
benchmarks or models. Instead, we observe that
using a middle layer, such as layer 8, tends to be
advantageous across benchmarks and models com-
pared to the last layer or the aggregation of the last
four layers (see Figure 2 and 3).

5 Computational annotation

We evaluate different models on reproducing hu-
man judgments (i), the inferred word senses (ii),
and the resulting change scores ((iii)).

We leverage models as annotators, hence the
term computational annotator, using the same
procedure employed for benchmark construc-
tion (Schlechtweg, 2023; Schlechtweg et al., 2021,
2020; Schlechtweg and Schulte im Walde, 2020;
Schlechtweg et al., 2018). However, we cannot
evaluate LA as the benchmark was developed dif-
ferently nor (ii) for the RU benchmark since no
word senses were provided (Kutuzov and Pivo-
varova, 2021b,c).

5.1 (i) - Word-in-Context
Given a benchmark, a word usage pair is associated
with two contexts, c1 and c2, along with the aver-
age judgment of multiple annotators (see Exam-
ple A). We thus use the cosine similarity between
the embeddings of w in the contexts c1 and c2 as

computational proximity judgement.
Our evaluation is grounded in the Word-in-

Context (WiC) task (Loureiro et al., 2022; Ra-
ganato et al., 2020; Pilehvar and Camacho-
Collados, 2019). In contrast to the original WiC
definition, our WiC evaluation aligns with the con-
tinuous framework introduced by Armendariz et al.
(2020) in the Graded Word Similarity in Context
task. Specifically, we evaluate the quality of com-
putational predictions by computing the Spearman
correlation with human judgments.

5.2 (ii) - Word Sense Induction
We first create a DWUG using the computational
annotations in Section 5.1. Then, we derive sense
clusters through a variation of correlation cluster-
ing (Bansal et al., 2004) on the DWUG.

Our evaluation is grounded in the Word Sense
Induction (WSI) task (Aksenova et al., 2022,?;
Manandhar et al., 2010; Agirre and Soroa, 2007).
We evaluate the quality of clusters from computa-
tionally annotated DWUGs against clusters from
human-annotated DWUGs. Specifically, we use
Adjusted Rand Index (ARI, Hubert and Arabie,
1985) and Purity (PUR, Manning, 2009) as metrics
to quantify the cluster agreement. ARI compre-
hensively evaluates the similarity among clustering
result. However, it may yield low scores when
a clustering result contains numerous small, yet
coherent clusters. This does not necessarily indi-
cate poor clustering quality, especially when the
clusters are semantically meaningful. PUR assigns
each cluster to the class that is most frequent in
the cluster, measuring the accuracy of this assign-
ment by counting the relative number of correctly
assigned elements.

5.3 (iii) - Graded Change Detection
Given a word w, we split its DWUG into two sub-
graphs representing nodes from the two time peri-
ods (see Figure 1) and quantify the semantic change
of w by computing the

√
JSD between the two

time-specific cluster distributions. In contrast, for
RU, we adhere to the RuShiftEval procedure and
quantify semantic change through the application
of the COMPARE metric that directly measures the
mean relatedness of annotated word usage pairs as
semantic change scores (Schlechtweg et al., 2018).
Our evaluation is based on the GCD task and thus
use Spearman correlation as evaluation metric be-
tween predicted ranking and ground truth rankings.



5.4 Evaluation results – Table 2
(i) - Word-in-Context Our evaluation reveals
that pre-trained models such as BERT, mBERT,
and XLM-R demonstrate a low average correlation
with human judgments (.358, .301, .272). In con-
trast, XL-LEXEME and GPT-4 emerge as powerful
solutions for scaling up and aiding human annota-
tions. For EN, they obtain a moderately strong
correlation (.626, .606) with human judgments,
only marginally lower than the Krippendorf α hu-
man agreement (.633). In particular, XL-LEXEME
slightly outperforms a considerably larger model
like GPT-4 in terms of parameters, at a considerable
lower cost. In contrast to previous cross-lingual
evaluation (Conneau et al., 2020) and in line with
the finding in Table 1, mBERT consistently outper-
forms XLM-R. However, our results highlight the
advantageous use of monolingual BERT models
over the multilingual ones, for assessing (i) - WiC.

We consider the WiC evaluation to be the most
valuable as it involves a direct comparison between
computational predictions and human judgments.

(ii) - Word Sense Induction Our evaluation indi-
cates that moderate performance in (i)-WiC leads
to moderately low performance in inferring word
sense. We obtain low ARI scores across all models
and benchmarks, with XL-LEXEME and GPT-4
exhibiting the highest values. Specifically, GPT-4
outperforms XL-LEXEME (with .340 compared to
.273) in ARI for EN. However, we highlight that
even such low scores represent a moderately high
result, given an inter-annotator agreement of .633.

XL-LEXEME consistently demonstrates high
PUR scores across all benchmarks, while other
models yield slightly lower PUR scores, suggest-
ing that some word sense patterns are captured
when using contextualized models. Previous stud-
ies highlight that contextualized models tend to
produce a large number of clusters (Martinc et al.,
2020b; Periti et al., 2022), thereby influencing PUR
scores. Therefore, it is crucial to interpret PUR in
conjunction with ARI.

(iii) - Graded Change Detection As for GCD,
we obtain average results for BERT, mBERT, XLM-
R, and XL-LEXEME equal to .422, .357, .324,
.754, respectively. These results are consistent
with those presented in Table 1, when compared to
form-based approaches (.316 – .751). We observe
that employing more word usage pairs, as in Ta-
ble 1, proves beneficial for certain benchmarks in

the GCD tasks (e.g., XL-LEXEME+APD for EN
and DE). However, we note that these results for
(ii) - WSI are significantly higher to those obtained
by sense-based approaches (.077 – .422). This can
likely be attributed the fact that here we are using
the same clustering algorithm that was used for ob-
taining the ground truth clusters, or to the fact that
the clustering algorithm is more able to capture nu-
anced word meaning than AP and APP. In contrast,
for RU, following the RuShiftEval procedure does
not improve the performance and results between
Table 1 and 2 are somewhat comparable.

6 Concluding remarks

We have performed a first-ever evaluation of mod-
els and approaches for modeling LSC under equal
settings and conditions, over eight different lan-
guages. First, we evaluated different models com-
bined with standard approaches to the popular GCD
task. In particular, we consider BERT, mBERT,
XLM-R, XL-LEXEME as pre-trained models,
APD and PRT as form-based approaches, and
AP+JSD and WiDiD as sense-based approaches.
We find that the XL-LEXEME consistently outper-
forms other models across all approaches, and thus
should be used as the defacto standard. We also
find that form-based approaches significantly out-
perform sense-based approaches, with APD as the
best approach for GCD. Among the sense-based
approaches, we find that evolutionary clustering
is advantageous in contrast to static clustering and
should be a focus of future work. We addition-
ally extended the evaluation to includes the WiC
and WSI tasks, both inherently crucial to solve
the complex task of LSC. We compare GPT-4 to
the previous models and find that GPT-4 and XL-
LEXEME both perform close to human-level while
the other models obtain only low-moderate per-
formance. Due to the costs associated with using
GPT-4, it is not affordable to evaluate it on the re-
maining languages. Since XL-LEXEME obtains
results close those of GPT-4, even beating it for the
WiC task, we argue that XL-LEXEME can be used
for LSC tasks as a affordable, scalable solution.

All in all, considering the current state of the
LSC modeling, we argue that only obtaining state-
of-the-art performance on GCD does not solve
the LSC problem, as there is a clear need to dis-
tinguish the different senses of a word and how
these evolve over time (Periti et al., 2023). GCD
maintains relevance for identifying words that have



changed across multiple time periods in need of
further sense-based modeling. GCD also serves to
quantify the change on the level of vocabulary. In
conclusion, we offer a first comparable evaluation
of contextualized word embeddings for LSC and
establish clear settings that should be used for fu-
ture comparison and evaluation. With this work,
we want to raise awareness of the current trend of
the community in modeling only the GCD task.
Our aim is to shift the focus from merely assess-
ing how much to how, when, and why, prompting
the development of both unsupervised and super-
vised approaches for addressing the full spectrum
of LSC.

7 Limitations

There are limitations we had to consider in the
making of this paper. Firstly, we could not evalu-
ate GPT-4 across all languages due to both price
and API limitations. This means that while the
results are comparable with XL-LEXEME for EN,
we do not know how GPT-4 will behave for the
other languages. Although we are aware of open
source solution such as LLaMA, our initial experi-
ments, revealed that its performance does not match
that of GPT-4. As LLaMA still necessitates expen-
sive research infrastructure, we chose to focus only
GPT-4. Our decision to use GPT-4 over the cheaper
GPT-3 is based on recent studies showing conflict-
ing results across different tasks. Notably, Karjus
(2023) reported high scores for GPT-4 in the GCD
task. However, Periti et al. (2024); Laskar et al.
(2023); Kocoń et al. (2023) reported low scores
for the WiC task when employing GPT-3. As a
result, we opted for GPT-4 to ensure relevance and
accuracy in our evaluations.

In this paper, we evaluate different contextual-
ized models utilizing the popular Transformers li-
brary for deep learning maintained by Hugging
Face (Wolf et al., 2020). We specifically excluded
the evaluation of a BERT model for Latin, opt-
ing instead to focus on mBERT, XLM-R, and XL-
LEXEME. Although a recent BERT model has
been exclusively trained for Latin (Riemenschnei-
der and Frank, 2023; Lendvai and Wick, 2022),
there is no open version on the Hugging Face plat-
form. Since we are not aware of any experiment
employing this specific BERT model for address-
ing GCD, we chose to exclude the use of BERT
from our evaluation of LA.

To make a fair comparison between different

contextualized models, we employed the same
procedure across all benchmarks and languages.
However, different languages have different struc-
tures and hence different requirements. It would
be equally fair to have different processing of the
different benchmarks (e.g., lemmatization for Ger-
man, Laicher et al., 2021). We opted to reduce the
number of open variables to be able to make this
first evaluation. Future work could optimize each
language and then compare model performance.

Lastly, the models compared in this study, de-
spite sharing similar architectures, tokenize text
sequences differently based on their reference vo-
cabulary. Consequently, a word may be split into
different subtokens by one model and represented
as a single token by another. Additionally, when
contexts exceed the maximum input size, different
models may truncate them at various points. Ad-
hering to standard procedures in the field of LSC,
we use the average embeddings of sub-words when
a word is split into multiple sub-words. However,
the impact of different truncation methods was not
evaluated.
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Appendix

A Semantic proximity

As an example, consider the following word usage
pair ⟨w, c1, c2⟩ extracted by the English benchmark
for the word w =plane.

• c1: But we are most familiar with the exhibi-
tions of gravity in bodies descending inclined
planes, as in the avalanche and the cataract.

• c2: Over the next several years, he said, the
Coast Guard will get 60 more people, two new
270-foot vessels and al twin-engine planes.

Following the DURel relatedness scale (see Ta-
ble 3), the pair is annotated with an average judg-
ment of 1 by human annotators.

x
4: Identical
3: Closely related
2: Distantly related
1: Unrelated

Table 3: The DURel relatedness scale used
in Schlechtweg et al. (2023); Schlechtweg (2023);
Schlechtweg et al. (2021, 2020); Schlechtweg and
Schulte im Walde (2020); Schlechtweg et al. (2018)

B State-of-the-art for Graded Change
Detection

In Table 5, we report the current top scores for
GCD in the state-of-the-art with a reference to the
paper from where the result is taken. Notably, we
report results for different benchmarks using four
different approaches evaluated in this paper. How-
ever, some benchmarks might have been assessed
using other approaches that are excluded from this
table.

C Graded Change Detection across layers

In Table 4, we report correlation scores for GCD
across benchmarks. Specifically, we report results
for BERT, mBERT, and XLM-R (separated by
slash, i.e. “/”) by utilizing all layers of the models
(1-12), individually.

In Figure 2 and 3, we report correlation scores
distribution for GCD obtained by using all possible
layer combinations of length 2 (e.g., Layer 1 and
2), length 3 (e.g., Layer 10, 11, 12), and length 4
(e.g., Layer 1, 10, 11, 12) for BERT, mBERT, and
XLM-R.

For the sake of comparison, we report in Table 8
the overall top score for GCD obtained using BERT,
mBERT, and XLM-R. Specifically, we present re-
sults for the optimal combination and the outcome
obtained by summing the last four layers, separated
by a slash. Additionally, we include the standard
result obtained using the last layer individually.

D Benchmarks

In Table 6, we report the benchmarks used in this
work. Specifically, for each benchmark, we report
time periods, diachronic corpus composition, num-
ber of targets, and benchmark versions.

E BERT, mBERT, XLM-R,
XL-LEXEME

In Table 7, we report the BERT, mBERT, XLM-
R, and XL-LEXEME models employed in our
evaluation. All the models are base versions
with 12 encoder layers and can be accessed on
huggingface.co.

F BERT, mBERT, XLM-R, XL-LEXEME

In Table 7, we report the BERT, mBERT, XLM-
R, and XL-LEXEME models employed in our
evaluation. All the models are base versions
with 12 encoder layers and can be accessed on
huggingface.co.

huggingface.co
huggingface.co


G GPT-4 evaluation

We evaluate GPT-4 as computational annotator
by relying on computational proximity judgments
gathered through the following method.

Model initialization. We initialized the model
with the following prompt (guideline):

Determine whether an input word has the

same meaning in the two input sentences.

Answer with ’Same’, ’Related’, ’Linked’,

or ’Distinct’. This is very important

to my career.

Notably, we combine and refine two differ-
ent prompts used in previous works. We drew
inspiration from the prompt utilized by Karjus
(2023) to assess GPT-4 in addressing the Graded
Change Detection task. Additionally, we drew
inspiration from the prompt utilized by Li et al.
(2023), called EmotionPrompt, which combines
the original prompt with emotional stimuli to
enhance the performance of Large Language
Models.

Model template. For each word usage pair, we
used the following prompt:

Determine whether [Target word] has

the same meaning in the following

sentences. Do they refer to roughly

the Same, different but closely Related,

distant/figuratively Linked or unrelated

Distinct word meanings?

Sentence 1: [Context 1]

Sentence 2: [Context 2]

Notably, drawing inspiration from the Ope-
nAI documentation7 and the prompts utilized in
previous work for the Word-in-Context task (Ko-
coń et al., 2023; Laskar et al., 2023), we structured
our prompt in a format that facilitates parsing and
comprehension. For each usage pair ⟨w, c1, c2⟩ of
a word w, we substitute [Target word] with the
actual target w and [Context 1] and [Context 2]
with c1 and c2, respectively.

We prompt GPT-4 without providing any mes-
sage history. This means that, for each usage pair
⟨w, c1, c2⟩, we re-initialize the model with the ini-
tial prompt (guideline) and subsequently prompt

7platform.openai.com/docs/guides/
prompt-engineering

the model to gather a semantic proximity judgment
for the pair ⟨w, c1, c2⟩. This approach ensures that
the model relies solely on its pre-trained knowl-
edge, preventing potential biases stemming from
previously prompted pairs.

platform.openai.com/docs/guides/prompt-engineering
platform.openai.com/docs/guides/prompt-engineering


EN LA DE SV ES RU NO ZH Avgw
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2 Ci − Cj

fo
rm

-b
as

ed

APD

1
2
3
4
5
6
7
8
9
10
11
12

.358 / .278 / .064

.464 / .346 / .229

.574 / .389 / .314

.628 / .410 / .400

.684 / .412 / .452

.667 / .395 / .438

.614 / .419 / .395

.642 / .408 / .426

.600 / .406 / .460

.530 / .348 / .511

.554 / .305 / .548

.563 / .363 / .444

- / .153 / .073
- / .119 / .006
- / .047 / -.025
- / .022 / -.010
- / -.028 / .043
- / -.005 / .061
- / -.009 / .073
- / .023 / .043
- / .044 / -.047
- / .008 / -.082
- / .023 / -.069
- / .102 / .151

.144 / .218 / .270

.155 / .208 / .319

.164 / .232 / .301

.176 / .241 / .326

.237 / .344 / .414

.309 / .397 / .471

.335 / .434 / .471

.389 / .481 / .474

.427 / .423 / .479

.354 / .333 / .433

.275 / .315 / .409

.271 / .398 / .264

.213 / .132 / .134

.255 / .129 / .234

.295 / .189 / .289

.307 / .254 / .286

.305 / .321 / .351

.242 / .352 / .424

.237 / .404 / .441

.248 / .455 / .456

.250 / .463 / .468

.275 / .414 / .497

.267 / .309 / .500

.270 / .389 / .257

.167 / .104 / .003

.255 / .164 / .076

.307 / .212 / .139

.394 / .276 / .184

.450 / .345 / .279

.468 / .361 / .277

.479 / .364 / .280

.438 / .430 / .297

.399 / .413 / .352

.282 / .331 / .407

.257 / .265 / .444

.335 / .341 / .386

.335 / .204 / .258

.374 / .198 / .245

.427 / .215 / .238

.492 / .257 / .287

.519 / .295 / .374

.516 / .338 / .438

.549 / .402 / .439

.566 / .427 / .430

.539 / .382 / .401

.515 / .362 / .369

.439 / .333 / .361

.518 / .368 / .290

.281 / .204 / .308

.309 / .188 / .283

.370 / .218 / .292

.427 / .247 / .346

.465 / .275 / .453

.463 / .305 / .503

.495 / .379 / .473

.495 / .400 / .466

.479 / .364 / .419

.461 / .313 / .405

.393 / .256 / .394

.482 / .345 / .287

.261 / .214 / .253

.303 / .218 / .236

.360 / .242 / .241

.431 / .280 / .288

.456 / .318 / .373

.467 / .347 / .432

.523 / .429 / .430

.531 / .451 / .427

.534 / .405 / .404

.523 / .379 / .402

.461 / .330 / .401

.476 / .386 / .318

.160 / .143 / .145

.199 / .155 / .153

.290 / .170 / .171

.364 / .168 / .143

.396 / .192 / .165

.400 / .180 / .172

.429 / .262 / .191

.416 / .291 / .197

.429 / .257 / .190

.418 / .226 / .191

.378 / .196 / .215

.441 / .279 / .195

.234 / .219 / .203

.288 / .213 / .235

.371 / .223 / .243

.463 / .322 / .264

.497 / .364 / .330

.532 / .374 / .367

.547 / .437 / .375

.529 / .499 / .373

.525 / .462 / .394

.531 / .425 / .411

.530 / .403 / .432

.466 / .488 / .379

.340 / -.100 / -.222
.540 / .263 / .338
.594 / .464 / .540
.747 / .613 / .615
.720 / .662 / .600
.667 / .661 / .629
.645 / .725 / .618
.654 / .715 / .638
.667 / .670 / .646
.625 / .656 / .613
.604 / .628 / .601
.656 / .689 / .500

.255 / .171 / .166

.312 / .198 / .216

.371 / .232 / .244

.438 / .275 / .284
.471 / .315 / .36

.473 / .338 / .398

.494 / .390 / .393

.497 / .421 / .396

.486 / .391 / .388

.450 / .346 / .387

.405 / .303 / .392

.449 / .371 / .316

PRT

1
2
3
4
5
6
7
8
9
10
11
12

.295 / .195 / .221

.409 / .271 / .382

.436 / .295 / .453

.467 / .290 / .487

.494 / .315 / .476

.516 / .353 / .447

.529 / .383 / .462

.539 / .383 / .464

.549 / .358 / .437

.511 / .355 / .481

.452 / .342 / .501

.457 / .270 / .411

- / .289 / .303
- / .286 / .263
- / .277 / .271
- / .255 / .297
- / .232 / .322
- / .257 / .350
- / .304 / .349
- / .292 / .359
- / .311 / .319
- / .280 / .329
- / .298 / .308
- / .380 / .424

.133 / .162 / .122

.217 / .198 / .125

.267 / .230 / .141

.297 / .285 / .204

.343 / .384 / .294

.379 / .421 / .357

.400 / .437 / .385

.398 / .468 / .402

.390 / .469 / .477

.380 / .454 / .486

.412 / .430 / .507

.422 / .436 / .369

.215 / .001 / .045

.274 / .006 / .066

.301 / .012 / .078

.280 / .017 / .087

.233 / .060 / .129

.206 / .082 / .171

.178 / .008 / .184

.197 / .081 / .196

.201 / .096 / .247

.193 / .133 / .223

.169 / .076 / .245

.158 / .193 / .020

.303 / .295 / .190

.407 / .397 / .328

.438 / .424 / .364

.455 / .446 / .388

.455 / .495 / .439

.451 / .524 / .449

.466 / .498 / .453

.453 / .514 / .463

.476 / .501 / .503

.417 / .482 / .538

.422 / .489 / .540

.413 / .543 / .505

.263 / .271 / .220

.304 / .279 / .216

.338 / .311 / .203

.398 / .329 / .246

.399 / .364 / .323

.391 / .359 / .365

.411 / .379 / .358

.404 / .393 / .375

.375 / .353 / .382

.349 / .376 / .409

.319 / .344 / .412

.400 / .391 / .321

.206 / .149 / .305

.261 / .139 / .352

.305 / .191 / .405

.346 / .235 / .433

.395 / .327 / .509

.390 / .374 / .519

.426 / .447 / .510

.410 / .421 / .531

.402 / .404 / .471

.379 / .382 / .447

.317 / .335 / .439

.374 / .356 / .443

.159 / .169 / .144

.196 / .161 / .153

.251 / .195 / .162

.306 / .250 / .234

.331 / .313 / .323

.331 / .365 / .384

.380 / .413 / .384

.380 / .411 / .396

.353 / .384 / .401

.335 / .366 / .431

.303 / .321 / .438

.347 / .423 / .405

.032 / -.005 / .028

.122 / -.020 / .092
.250 / .042 / .111
.378 / .019 / .102
.440 / .096 / .137
.449 / .104 / .181
.511 / .161 / .192
.449 / .227 / .292
.481 / .243 / .351
.482 / .212 / .373
.448 / .197 / .360
.507 / .219 / .387

.161 / .168 / .039
.349 / .215 / -.020
.365 / .294 / .005
.408 / .303 / .075
.466 / .367 / .189
.471 / .330 / .232
.501 / .371 / .236
.493 / .389 / .246
.485 / .380 / .239
.481 / .398 / .263
.503 / .365 / .214
.444 / .438 / .149

.383 / .017 / -.139
.582 / .192 / .140
.676 / .397 / .424
.691 / .525 / .544
.651 / .551 / .531
.637 / .556 / .475
.641 / .613 / .549
.664 / .619 / .575
.671 / .606 / .646
.626 / .583 / .619
.602 / .550 / .620
.712 / .524 / .558

.220 / .178 / .165

.302 / .209 / .216

.348 / .253 / .253

.389 / .283 / .296

.408 / .337 / .357

.408 / .362 / .383

.433 / .389 / .390

.426 / .400 / .409

.422 / .385 / .418

.396 / .378 / .431

.371 / .350 / .432

.406 / .395 / .381

se
ns

e-
ba

se
d

AP

1
2
3
4
5
6
7
8
9
10
11
12

.129 / .220 / .032
.288 / .079 / -.128
.267 / .161 / .016
.353 / .330 / .087
.432 / .221 / .322
.431 / .208 / .330
.144 / .362 / .321
.228 / .418 / .175
.424 / .357 / .311
.233 / .317 / .289
.148 / .338 / .374
.289 / .181 / .278

- / -.011 / .409
- / .008 / .215
- / -.012 / .218
- / -.106 / .253
- / -.024 / .281
- / -.000 / .286
- / -.044 / .233
- / -.101 / .260
- / .120 / .153
- / .124 / .381
- / .132 / .266
- / .277 / .398

-.108 / -.087 / -.040
.113 / -.131 / -.017
.007 / -.043 / .120
-.041 / .088 / .054
.143 / .235 / .196
.243 / .372 / .280
.284 / .443 / .387
.417 / .353 / .393
.339 / .322 / .361
.393 / .328 / .334
.465 / .275 / .435
.469 / .280 / .224

-.121 / -.021 / -.244
-.138 / -.141 / -.244
-.201 / -.117 / -.177
-.213 / -.131 / -.172
-.015 / -.083 / -.125
-.129 / -.040 / -.070
-.070 / -.031 / -.155
.124 / .114 / -.082
.054 / .010 / -.195
-.023 / .061 / -.210
-.057 / .175 / .133
-.090 / .023 / -.076

.168 / .233 / .172

.104 / .109 / .140

.161 / .142 / .063

.263 / .195 / .266

.247 / .319 / .162

.363 / .251 / .002

.406 / .301 / .216

.384 / .401 / .031

.270 / .296 / .157

.294 / .201 / .151

.351 / .310 / .039

.225 / .067 / .224

.050 / -.001 / -.154
-.127 / -.154 / -.036
-.006 / .007 / -.019
.093 / -.159 / -.042
.072 / -.085 / -.035
-.049 / -.111 / -.094
.082 / -.069 / .067
.058 / -.014 / -.073
.038 / .013 / -.081
.126 / .108 / .044

-.004 / .034 / -.069
.069 / .017 / -.068

.132 / .108 / .060

.038 / .110 / .073
-.002 / .058 / .129
.045 / .096 / .104
.169 / .014 / .140
.173 / .093 / .176
.288 / .235 / .084
.128 / .230 / .211
.072 / .149 / .232
.116 / .169 / .240
.068 / .141 / .279
.279 / .086 / .209

.098 / -.143 / .023
.096 / -.109 / -.025
.027 / -.130 / -.020
.168 / -.076 / .050
.081 / -.019 / .025
.091 / .035 / .291
.190 / .158 / .131
.088 / .137 / .228
.098 / .055 / .011
.187 / .082 / .194
.157 / .113 / .262
.094 / -.116 / .130

-.104 / -.237 / -.019
.031 / -.230 / -.025
-.118 / .016 / -.060
-.281 / -.123 / -.016
-.318 / -.027 / .033
-.192 / -.076 / .031
-.257 / -.114 / -.051
-.165 / -.114 / -.109
-.016 / .005 / .045
.151 / -.127 / -.041
.021 / -.232 / -.211
.314 / .035 / -.100

-.048 / .021 / -.239
-.039 / .104 / .028
-.051 / -.011 / .124
.257 / -.282 / .020
.323 / .143 / .149
.440 / .206 / .131
.115 / .140 / -.130
-.029 / .469 / .256
.092 / .198 / .031
.168 / .271 / .101
.090 / .146 / .062
.011 / -.090 / .030

.118 / -.179 / .110
.301 / -.058 / -.048
.189 / .221 / -.143
.360 / .322 / -.047
.251 / .689 / .343
.458 / .342 / .280
.292 / .226 / .344
.113 / .231 / .045
.423 / .404 / .245
.430 / .291 / .436
.322 / .223 / .243
.165 / .465 / .448

.060 / .011 / .012
.052 / -.030 / .006
.033 / .021 / .028
.113 / .014 / .064
.140 / .097 / .112
.166 / .099 / .132
.183 / .153 / .131
.148 / .192 / .117
.157 / .158 / .104
.197 / .158 / .169
.151 / .151 / .158
.179 / .077 / .142

WiDiD

1
2
3
4
5
6
7
8
9
10
11
12

.253 / .301 / .278

.434 / .261 / .065

.423 / .268 / .147

.611 / .228 / .448

.527 / .078 / .393

.458 / .250 / .625

.305 / .328 / .475

.449 / .312 / .411

.544 / .509 / .567

.396 / .301 / .587

.299 / .218 / .627

.385 / .323 / .564

- / .028 / -.048
- / .018 / -.130
- / .026 / .019
- / .030 / .108

- / -.020 / -.037
- / -.030 / -.050
- / .139 / .106
- / .091 / .038
- / -.066 / .104
- / -.024 / .187
- / -.064 / -.111
- / -.039 / -.064

.147 / .204 / .219

.106 / .143 / .292

.115 / .120 / .474

.126 / .067 / .424

.190 / .173 / .509

.293 / .294 / .433

.235 / .253 / .514

.344 / .341 / .565

.353 / .299 / .573

.315 / .407 / .477

.258 / .381 / .486

.355 / .312 / .499

.120 / .052 / -.062
-.041 / .015 / -.118
.198 / .029 / .106
.176 / -.130 / .312
.151 / -.074 / .300
.211 / .148 / .335
.295 / .198 / .414
.071 / .354 / .321
.184 / .319 / .203
.145 / .233 / .148
.172 / .128 / .343
.106 / .195 / .129

.132 / .051 / -.015
.103 / .105 / .110
.228 / .108 / .118
.292 / .175 / .221
.356 / .295 / .310
.382 / .387 / .346
.382 / .318 / .324
.340 / .371 / .395
.324 / .450 / .372
.306 / .388 / .471
.424 / .432 / .464
.383 / .343 / .459

.159 / .047 / .125
.209 / -.046 / .274
.251 / -.073 / .345
.091 / -.039 / .332
-.034 / .023 / .259
.094 / .063 / .184
.017 / .032 / .292
.000 / -.008 / .105
-.002 / .075 / .108
.011 / .087 / .270
.134 / .152 / .220
.135 / -.068 / .268

.108 / .073 / .197

.076 / .180 / .060

.091 / .113 / .184

.010 / .041 / .307

.071 / .076 / .314

.141 / .066 / .210

.203 / .285 / .152

.284 / .260 / .243

.083 / .076 / .171

.302 / .090 / .308

.234 / .120 / .334

.102 / .160 / .216

.090 / -.036 / .051
.212 / -.038 / -.008
.233 / .077 / .153
.157 / -.053 / .059
.205 / .137 / .202
.182 / .288 / .264
.216 / .188 / .458
.025 / .203 / .267
.205 / .205 / .388
.060 / .172 / .328
.185 / .087 / .312
.243 / .142 / .342

.356 / .150 / .090
.285 / -.030 / .085
.229 / -.102 / .074
.242 / .038 / .002
.297 / .100 / .023
.261 / -.080 / .215
.244 / .119 / .247
.221 / .226 / .262
.183 / .063 / .174
.155 / .179 / .234
.218 / .195 / .345
.233 / .241 / .226

.120 / .127 / .154

.161 / .103 / .214

.239 / .064 / .204

.340 / .152 / .062

.380 / .156 / .316

.428 / .295 / .102
.397 / .195 / -.034
.449 / .428 / .155
.390 / .118 / .149
.488 / .175 / .275
.296 / .291 / .438
.087 / .290 / .349

.122 / .026 / .160
.371 / -.013 / .063
.256 / .114 / .349
.388 / .279 / .417
.524 / .193 / .217
.446 / .271 / .335
.338 / .298 / .293
.475 / .325 / .286
.404 / .347 / .328
.428 / .355 / .383
.539 / .277 / .372
.533 / .338 / .382

.146 / .074 / .103

.175 / .060 / .094

.216 / .065 / .203

.200 / .054 / .244

.218 / .112 / .265

.252 / .185 / .269

.237 / .211 / .304

.224 / .242 / .271

.222 / .212 / .280

.224 / .204 / .339

.260 / .199 / .345

.239 / .181 / .314

Table 4: Comprehensive evaluation of standard approaches to GCD by using the layers 1-12 of BERT / mBERT / XLM-R. Top score for each approach, model, and
benchmark in bold. Avg is the weighted average score based on the number of targets in each benchmark.



EN LA DE SV ES RU NO ZH
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2

fo
rm

-b
as

ed A
PD

XL-L. : .757
Cassotti et al.
BERT: .706
Zhou et al.

XL-L. : -.056
Cassotti et al.
mBERT: .443

Pömsl and Lyapin

XL-L. : .877
Cassotti et al.
BERT: .731

Laicher et al.

XL-L. .754
Cassotti et al.
BERT: .602

Laicher et al.

n.a.
n.a.

XL-L. : .799
Cassotti et al.
XLM-R: .372

Giulianelli et al.

XL-L. : .833
Cassotti et al.
XLM-R: .480

Giulianelli et al.

XL-L. : .842
Cassotti et al.
XLM-R: .457

Giulianelli et al.

XL-L. : .757
Cassotti et al.
XLM-R: .389

Giulianelli et al.

XL-L. : .757
Cassotti et al.
XLM-R: .387

Giulianelli et al.

n.a.
n.a.

PR
T

BERT: .531
Zhou et al.
BERT: .467
Rosin et al.

n.a.
mBERT: .561

Kutuzov and Giulianelli

n.a.
BERT: .755

Laicher et al.

n.a.
BERT: .392
Zhou and Li

n.a.
n.a.

n.a.
XLM-R: .294

Giulianelli et al.

n.a.
XLM-R: .313

Giulianelli et al.

n.a.
XLM-R: .313

Giulianelli et al.

n.a.
XLM-R: .378

Giulianelli et al.

n.a.
XLM-R: .270

Giulianelli et al.

n.a.
n.a.

se
ns

e-
ba

se
d A
P+

JS
D

n.a.
BERT: .436

Martinc et al.

n.a.
mBERT: .481
Martinc et al.

n.a.
BERT: .583

Montariol et al.

n.a.
BERT: .343

Martinc et al.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

W
iD

iD

n.a.
BERT: .651
Periti et al.

n.a.
XLM-R: - .096

Periti et al.

n.a.
XLM-R: .527

Periti et al.

n.a.
XLM-R: .499

Periti et al.

n.a.
BERT: .544
Periti et al.

n.a.
mBERT: .273

Periti et al.

n.a.
mBERT: .393

Periti et al.

n.a.
mBERT: .407

Periti et al.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

Table 5: State-of-the-art performance for GCD: Top Spearman correlations obtained across benchmarks by form-
and sense-based approaches. For each approach, we report correlation for both supervised (above the line) and
unsupervised (below the line) settings.

EN LA DE SV ES RU NO ZH
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2

Time
periods

C1: 1810 – 1860
C2: 1960 – 2010

C1: 200 – 0
C2: 0 – 2000

C1: 1800 – 1899
C2: 1946 – 1990

C1: 1790 – 1830
C2: 1895 – 1903

C1: 1810 – 1906
C2: 1994 – 2020

C1: 1700 – 1916
C2: 1918 – 1990

C2: 1918 – 1990
C3: 1992 –2016

C1: 1700 – 1916
C3: 1992 –2016

C1: 1929 –1965
C2: 1970 – 2013

C1: 1980 – 1990
C2: 2012 – 2019

C1: 1954 – 1978
C2: 1979 – 2003

Diachronic
Corpus

C1: CCOHA
C2: CCOHA

C1: LatinISE
C2: LatinISE

C1: DTA
C2: BZ+ND

C1: Kubhist
C2: Kubhist

C1: PG
C2: TED2013,

NC
MultiUN
Europarl

C1: RNC
C2: RNC
C3: RNC

C1: RNC
C2: RNC
C3: RNC

C1: RNC
C2: RNC
C3: RNC

C1: NBdigital
C2: NBdigital

C1: NBdigital
C2: NAK

C1: People’s Daily
C2: People’s Daily

# targets 46 40 50 44 100 111 111 111 40 40 40
Benchmark

version
version 2.0.1

Schlechtweg et al.
version 1

McGillivray et al.
version 2.3.0

Schlechtweg et al.
version 2.0.1

Tahmasebi et al.
version 4.0.0

Zamora-Reina et al.
version 1

Kutuzov and Pivovarova
version 1

Kutuzov et al.
version 1

Chen et al.

Table 6: LSC benchmark for Graded Change Detection. Overview of time periods, diachronic corpus composi-
tion, number of targets, and benchmark versions used in this study.

BERT mBERT XLM-R XL-LEXEME
English bert-base-uncased bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme
Latin - bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme

German bert-base-german-cased bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme
Swedish af-ai-center/bert-base-swedish-uncased bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme
Spanish dccuchile/bert-base-spanish-wwm-uncased bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme
Russian DeepPavlov/rubert-base-cased bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme

Norwegian NbAiLab/nb-bert-base bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme
Chinese bert-base-chinese bert-base-multilingual-cased xlm-roberta-base pierluigic/xl-lexeme

Table 7: BERT, mBERT, XLM-R, and XL-LEXEME models employed in our evaluation. All models are available
at huggingface.co.

huggingface.co


Figure 2: Score distribution for GCD obtained by using all possible layer combinations of length 2 (e.g., Layer 1
and 2), length 3 (e.g., Layer 10, 11, 12), and length 4 (e.g., Layer 1, 10, 11, 12) for BERT, mBERT, and XLM-R.
The y-axis represents the Spearman correlation. We highlight the performance for GCD obtained using Layer 8,
Layer 12, and the sum of the last 4 layers (i.e.,

⊕
9-12).



Figure 3: Score distribution for GCD obtained by using all possible layer combinations of length 2 (e.g., Layer 1
and 2), length 3 (e.g., Layer 10, 11, 12), and length 4 (e.g., Layer 1, 10, 11, 12) for BERT, mBERT, and XLM-R.
The y-axis represents the Spearman correlation. We highlight the performance for GCD obtained using Layer 8,
Layer 12, and the sum of the last 4 layers (i.e.,

⊕
9-12).
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EN LA DE SV ES RU NO ZH
C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C1 − C2 C2 − C3 C1 − C3 C1 − C2 C2 − C3 C1 − C2

fo
rm

-b
as

ed APD
BERT

mBERT
XLM-R

.692 / .566 (.563)

.466 / .365 (.363)

.579 / .518 (.444)

/
.136 / .034 (.102)
.080 / -.072 (.151)

.412 / .349 (.271)

.468 / .370 (.398)

.496 / .438 (.264)

.325 / .272 (.270)

.486 / .398 (.389)

.496 / .496 (.257)

.488 / .310 (.335)

.423 / .351 (.341)

.443 / .398 (.386)

.573 / .537 (.518)

.419 / .365 (.368)

.441 / .368 (.290)

.506 / .477 (.482)

.393 / .324 (.345)

.491 / .404 (.287)

.546 / .522 (.476)

.443 / .386 (.386)

.432 / .397 (.318)

.463 / .457 (.441)

.320 / .248 (.279)

.215 / .180 (.195)

.556 / .521 (.466)

.496 / .429 (.488)

.421 / .418 (.379)

.760 / .658 (.656)

.739 / .674 (.689)

.675 / .627 (.500)

PRT
BERT

mBERT
XLM-R

.550 / .520 (.457)

.382 / .339 (.270)

.513 / .476 (.411)

/
.352 / .305 (.380)
.365 / .312 (.424)

.421 / .397 (.422)

.467 / .454 (.436)

.497 / .486 (.369)

.293 / .170 (.158)

.132 / .105 (.193)

.253 / .236 (.020)

.478 / .441 (.413)

.555 / .514 (.543)

.538 / .522 (.505)

.425 / .368 (.400)

.411 / .373 (.391)

.409 / .402 (.320)

.418 / .374 (.374)

.442 / .386 (.356)

.530 / .453 (.443)

.383 / .346 (.347)

.434 / .367 (.423)

.449 / .435 (.405)

.538 / .513 (.507)

.256 / .228 (.219)

.384 / .384 (.387)

.513 / .481 (.444)

.432 / .405 (.438)

.270 / .220 (.149)

.706 / .649 (.712)

.648 / .588 (.524)

.642 / .627 (.558)

se
ns

e-
ba

se
d AP

BERT
mBERT
XLM-R

.464 / .245 (.289)

.501 / .313 (.181)

.473 / .340 (.278)

/
.326 / .179 (.277)
.482 / .398 (.398)

.520 / .435 (.469)

.428 / .329 (.280)

.502 / .370 (.224)

.201 / -.061 (-.090)
.193 / .090 (.023)
.235 / .022 (-.076)

.499 / .295 (.225)

.484 / .259 (.067)

.307 / .170 (.224)

.292 / .149 (.069)

.209 / .123 (.017)
.162 / .012 (-.068)

.418 / .216 (.279)

.316 / .175 (.086)

.378 / .247 (.209)

.386 / .207 (.094)
.247 / .058 (-.116)
.358 / .224 (.130)

.329 / .028 (.314)
.194 / -.105 (.035)
.322 / .132 (-.100)

.466 / .227 (.011)
.539 / .275 (-.090)
.465 / .035 (.030)

.671 / .587 (.165)
.645 / .256 (465)
.583 / .135 (.448)

WiDiD
BERT

mBERT
XLM-R

.635 / .441 (.385)

.600 / .317 (.323)

.760 / .663 (.564)

/
.252 / .055 (-.039)
.347 / -.077 (-.064)

.465 / .322 (.355)

.610 / .422 (.312)

.721 / .557 (.499)

.432 / .177 (.106)

.521 / .413 (.195)

.503 / .220 (.129)

.466 / .361 (.383)

.575 / .272 (.343)

.526 / .437 (.459)

.388 / .136 (.135)
.255 / .215 (-.068)
.426 / .223 (.268)

.410 / .190 (.102)

.373 / .056 (.160)

.460 / .352 (.216)

.408 / .280 (.243)

.327 / .252 (.142)

.485 / .304 (.342)

.531 / .160 (.233)

.500 / .459 (.241)

.505 / .399 (.226)

.578 / .336 (.087)

.467 / .292 (.290)

.440 / .336 (.349)

.701 / .537 (.533)

.620 / .513 (.338)

.637 / .349 (.382)

Table 8: Top score for GCD obtained using BERT, mBERT, and XLM-R. We present results for the optimal combination and the outcome obtained by summing the last four
layers, separated by a slash (i.e., best results / sum of last four layers). Additionally, for comparison purposes, we include the result obtained using the last layer individually
(enclosed in brackets).. Top scores for approach and benchmark are highlighted in bold.
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